题目内容

11.如图,AD是△ABC的高,AE是△ABC的外接圆⊙O的直径,且AB=4$\sqrt{2}$,AC=5,AD=4,求⊙O的直径.

分析 如图,连接BE.只要证明△ADC∽△ABE,可得$\frac{AC}{AE}$=$\frac{AD}{AB}$,即$\frac{5}{AE}$=$\frac{4}{4\sqrt{2}}$,由此即可求出直径AE.

解答 解:如图,连接BE.

∵AE是直径,AD⊥BC,
∴∠ADC=∠ABE=90°,
∵∠C=∠E,
∴△ADC∽△ABE,
∴$\frac{AC}{AE}$=$\frac{AD}{AB}$,
∴$\frac{5}{AE}$=$\frac{4}{4\sqrt{2}}$,
∴AE=5$\sqrt{2}$,
∴⊙O的直径为5$\sqrt{2}$.

点评 本题考查三角形的外接圆与外心、相似三角形的判定和性质等知识,解题的关键是正确寻找相似三角形解决问题,属于中考常考题型.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网