题目内容
18.| A. | 6 | B. | 9 | C. | 10 | D. | 12 |
分析 过点B作BE⊥x轴于E,延长线段BA,交y轴于F,得出四边形AFOD是矩形,四边形OEBF是矩形,得出S矩形AFOD=3,S矩形OEBF=k,根据平行线分线段成比例定理证得AB=2OD,即OE=3OD,即可求得矩形OEBF的面积,根据反比例函数系数k的几何意义即可求得k的值.
解答
解:过点B作BE⊥x轴于E,延长线段BA,交y轴于F,
∵AB∥x轴,
∴AF⊥y轴,
∴四边形AFOD是矩形,四边形OEBF是矩形,
∴AF=OD,BF=OE,
∴AB=DE,
∵点A在双曲线y=$\frac{3}{x}$上,
∴S矩形AFOD=3,
同理S矩形OEBF=k,
∵AB∥OD,
∴$\frac{OD}{AB}$=$\frac{CD}{AC}$=$\frac{1}{2}$,
∴AB=2OD,
∴DE=2OD,
∴S矩形OEBF=3S矩形AFOD=9,
∴k=9,
故选B.
点评 本题考查了反比例函数图象上点的坐标特征,反比例函数系数k的几何意义,矩形的判定和性质,平行线分线段成比例定理,作出辅助线,构建矩形是解题的关键.
练习册系列答案
相关题目
8.-0.5的绝对值的相反数的是( )
| A. | $\frac{1}{2}$ | B. | -$\frac{1}{2}$ | C. | 2 | D. | -2 |
13.如果$\sqrt{\frac{x-1}{y}}$是二次根式,那么x,y应满足的条件是( )
| A. | x≥1,y≥0 | B. | (x-1)•y≥0 | C. | $\frac{x-1}{y}$≥0 | D. | x≥1,y>0 |
10.下列实数是无理数的是( )
| A. | -1 | B. | 0 | C. | $\sqrt{3}$ | D. | $\frac{1}{3}$ |