题目内容

把(x-y)2-(y-x)分解因式为( )

A.(x-y)(x-y-1) B.(y-x)(x-y-1)

C.(y-x)(y-x-1) D.(y-x)(y-x+1)

C 【解析】 试题分析:化(x-y)2-(y-x)=(y-x)2-(y-x),再提取公因式(y-x)即可得到结果. (x-y)2-(y-x)=(y-x)2-(y-x)=(y-x)(y-x-1),故选C.
练习册系列答案
相关题目

小汽车刹车距离s(m)与速度v(km/h)之间的函数关系式为s=v2,一辆小汽车速度为100km/h,在前方80m处停放一辆故障车,此时刹车_______(填“会”或“不会”)有危险.

会 【解析】试题分析:由题意把代入即可求得s的值,与80比较即可判断. 在中,当时, 则此时刹车会有危险.

已知:如图,二次函数y=a(x﹣h)2+的图象经过原点O(0,0),A(2,0).

(1)写出该函数图象的对称轴;

(2)若将线段OA绕点O逆时针旋转60°到OA′,试判断点A′是否为该函数图象的顶点?请说明理由.

(1)直线x=1 (2)点A′为抛物线y=﹣(x﹣1)2+的顶点 【解析】 试题分析:(1)把已知点O、A代入函数的解析式可求出h的值h=1,及a=,然后根据二次函数的顶点式的特点判断出对称轴; (2)由线段OA绕点O逆时针旋转60°到OA′,可知OA′=OA=2,∠A′OA=60°,如图,作A′B⊥x轴于点B,根据直角三角形的特点可知sin60°=,cos60°=,因此可求得A...

已知a+b=-4,ab=2,求多项式4a2b+4ab2-4a-4b的值。

-16 【解析】 试题分析:先根据分组分解法分解多项式4a2b+4ab2-4a-4b,再整体代入求值即可得到结果. 当a+b=-4,ab=2时, 4a2b+4ab2-4a-4b=4ab(a+b)-4(a+b)=4(a+b)(ab-1)=-16.

把多项式(a﹣2)+m(2﹣a)分解因式等于( ).

A.(a﹣2)(+m) B.(a﹣2)(﹣m)

C.m(a﹣2)(m﹣1) D.m(a﹣2)(m+1)

C. 【解析】 试题分析:先把(2﹣a)转化为(a﹣2),然后提取公因式m(a﹣2),可得(a﹣2)+m(2﹣a)= m(a﹣2)(m﹣1). 故选:C.

在括号内填上适当的因式:(1) –x-1=-(______);(2)a-b+c=a-(______)

x+1 b-c 【解析】根据添括号法则可得:(1) –x-1=-(x+1);(2)a-b+c=a-(b-c).

计算(1)~(3)题,并根据计算结果将(4)~(6)题进行分解因式.

(1)(x-2)(x-1)=______; (2)3x(x-2)=______;

(3)(x-2)2=______; (4)3x2-6x=______;

(5)x2-4x+4=______; (6)x2-3x+2=______.

x2-3x+2 3x2-6x x2-4x+4 3x(x-2) (x-2)2 (x-2)(x-1) 【解析】(1)根据多项式乘以多项式的乘法法则可得(x-2)(x-1)=x2-3x+2;(2)根据单项式乘以多项式的乘法法则可得3x(x-2)=3x2-6x;(3)根据完全平方公式可得(x-2)2=x2-4x+4;(4)提取公因式3x可得3x2-6x=3x(x-2);(5)根据完全平方公式因式分解...

已知抛物线

(1)用配方法求它的顶点坐标、对称轴;

(2)x取何值时,y随x增大而减小?

(3)x取何值时,抛物线在x轴上方?

(1)顶点坐标为(-1, ),对称轴为:x= -1;(2)x﹥-1时,随增大而减小 ;(3)-4﹤x﹤2时,抛物线在x轴上方. 【解析】试题分析:(1)用配方法时,先提二次项系数,再配方,写成顶点式,根据顶点式的坐标特点求顶点坐标及对称轴; (2)对称轴是x=-1,开口向下,根据对称轴及开口方向确定函数的增减性; (3)令y=0,确定函数图象与x轴的交点,结合开口方向判断x的取值...

已知抛物线与x轴的交点为(,0)和(-2,0),则因式分解的结果是__________

【解析】∵抛物线与x轴的交点为(,0)和(-2,0),a=5, ∴抛物线的解析式用交点式表示为 ∴= 即: =. 故答案为: .

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网