题目内容

7.如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连结AP并延长交BC于点D,则下列结论正确的有(  )
①AD是∠BAC的平分线;②∠ADC=60°;③点D在AB的中垂线上;④S△ACD:S△ABD=1:2.
A.1个B.2个C.3个D.4个

分析 根据角平分线的作法可得①正确,再根据三角形内角和定理和外角与内角的关系可得∠ADC=60°,再根据线段垂直平分线的性质逆定理可得③正确,根据直角三角形的性质得出AD=2CD,再由线段垂直平分线的性质得出AD=BD,进而可得④正确.

解答 解:由题意可知AD是∠BAC的平分线,故①正确;
∵∠C=90°,∠B=30°,
∴∠CAB=60°,
∵AD平分∠CAB,
∴∠DAB=30°,
∴∠ADC=30°+30°=60°,故②正确;
∵∠DAB=30°,∠B=30°,
∴AD=BD,
∴点D在AB的中垂线上,故③正确;
∵∠CAD=30°,
∴AD=2CD.
∵点D在AB的中垂线上,
∴AD=BD,
∴BD=2CD,
∴S△ACD:S△ABD=1:2,故④正确.
故选D.

点评 此题考查的是作图-基本作图,角平分线的作法以及垂直平分线的性质,熟练根据角平分线的性质得出∠ADC度数是解题关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网