题目内容
12.分析 抓住两个特殊位置:当BC与x轴平行时,求出D的坐标;C与原点重合时,D在y轴上,求出此时D的坐标,设所求直线解析式为y=kx+b,将两位置D坐标代入得到关于k与b的方程组,求出方程组的解得到k与b的值,即可确定出所求直线解析式.
解答
解:当BC与x轴平行时,过B作BE⊥x轴,过D作DF⊥x轴,交BC于点G,如图1所示,
∵等腰直角△ABO的O点是坐标原点,A的坐标是(-4,0),
∴AO=4,
∴BC=BE=AE=EO=GF=$\frac{1}{2}$OA=2,OF=DG=BG=CG=$\frac{1}{2}$BC=1,DF=DG+GF=3,
∴D坐标为(-1,3);
当C与原点O重合时,D在y轴上,
此时OD=BE=2,即D(0,2),
设所求直线解析式为y=kx+b(k≠0),
将两点坐标代入得:$\left\{\begin{array}{l}{-k+b=3}\\{b=2}\end{array}\right.$,
解得:$\left\{\begin{array}{l}{k=-1}\\{b=2}\end{array}\right.$.
则这条直线解析式为y=-x+2,
当D(-1,1)和D(-2,0)
于是得到y=x+2,
综上所述:这条直线的函数表达式是y=x+2或y=-x+2.
故答案为:y=x+2或y=-x+2.
点评 本题考查了轨迹问题,待定系数法确定一次函数解析式,等腰直角三角形的性质,坐标与图形性质,熟练运用待定系数法是解本题的关键.
练习册系列答案
相关题目
7.已知半径为r的圆的面积是半径为2cm和3cm的两个圆的面积之和,则r=( )
| A. | 5cm | B. | $\sqrt{5}$cm | C. | 13cm | D. | $\sqrt{13}$cm |
17.当x<0时,函数y=-$\frac{3}{x}$的图象在( )
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |