ÌâÄ¿ÄÚÈÝ
8£®ÔĶÁ²ÄÁÏ£ºÐ¡Ã÷ÔÚѧϰ¶þ´Î¸ùʽºó£¬·¢ÏÖһЩº¬¸ùºÅµÄʽ×Ó¿ÉÒÔд³ÉÁíÒ»¸öʽ×ӵį½·½£¬Èç3+2$\sqrt{2}$=£¨1+$\sqrt{2}$£©2£¬ÉÆÓÚ˼¿¼µÄСÃ÷½øÐÐÁËÒÔÏÂ̽Ë÷£º
Éèa+b$\sqrt{2}$=£¨m+n$\sqrt{2}$£©2£¨ÆäÖÐa¡¢b¡¢m¡¢n¾ùΪÕûÊý£©£¬ÔòÓÐa+b$\sqrt{2}$=m${\;}^{2}+{2n}^{2}+2mn\sqrt{2}$£®
a=m2+2n2£¬b=2mn£®ÕâÑùСÃ÷¾ÍÕÒµ½ÁËÒ»ÖÖ°ÑÀàËÆa+b$\sqrt{2}$µÄʽ×Ó»¯ÎªÆ½·½Ê½µÄ·½·¨£®
ÇëÄã·ÂÕÕСÃ÷µÄ·½·¨Ì½Ë÷²¢½â¾öÏÂÁÐÎÊÌ⣺
£¨1£©µ±a¡¢b¡¢m¡¢n¾ùΪÕýÕûÊýʱ£¬Èôa+b$\sqrt{3}$=£¨m+n$\sqrt{3}$£©2£¬Óú¬m¡¢nµÄʽ×Ó·Ö±ð±íʾa£¬b£¬µÃa=m2+3n2£¬b=2mn£®
£¨2£©ÀûÓÃËù̽Ë÷µÄ½áÂÛ£¬ÓÃÍêȫƽ·½Ê½±íʾ³ö£º$7+4\sqrt{3}$=£¨2+$\sqrt{3}$£©2£®
£¨3£©Ç뻯¼ò£º$\sqrt{12+6\sqrt{3}}$£®
·ÖÎö £¨1£©ÀûÓÃÒÑÖªÖ±½ÓÈ¥À¨ºÅ½ø¶øµÃ³öa£¬bµÄÖµ£»
£¨2£©Ö±½ÓÀûÓÃÍêȫƽ·½¹«Ê½£¬±äÐεóö´ð°¸£»
£¨3£©Ö±½ÓÀûÓÃÍêȫƽ·½¹«Ê½£¬±äÐλ¯¼ò¼´¿É£®
½â´ð ½â£º£¨1£©¡ßa+b$\sqrt{3}$=£¨m+n$\sqrt{3}$£©2£¬
¡àa+b$\sqrt{3}$=£¨m+n$\sqrt{3}$£©2=m2+3n2+2$\sqrt{3}$mn£¬
¡àa=m2+3n2£¬b=2mn£»
¹Ê´ð°¸Îª£ºm2+3n2£»2mn£»
£¨2£©$7+4\sqrt{3}$=£¨2+$\sqrt{3}$£©2£»
¹Ê´ð°¸Îª£º£¨2+$\sqrt{3}$£©2£»
£¨3£©¡ß12+6$\sqrt{3}$=£¨3+$\sqrt{3}$£©2£¬
¡à$\sqrt{12+6\sqrt{3}}$=$\sqrt{£¨3+\sqrt{3}£©^{2}}$=3+$\sqrt{3}$£®
µãÆÀ ´ËÌâÖ÷Òª¿¼²éÁ˶þ´Î¸ùʽµÄÐÔÖÊÓ뻯¼ò£¬ÕýÈ·ÀûÓÃÍêȫƽ·½¹«Ê½»¯¼òÊǽâÌâ¹Ø¼ü£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
19£®ÒÑÖªx-y=-3£¬xy=2£¬Ôò£¨x+3£©£¨y-3£©µÄÖµÊÇ£¨¡¡¡¡£©
| A£® | -6 | B£® | 6 | C£® | 2 | D£® | -2 |
13£®Ä³³§Ã¿ÌìÖ»Éú²úA¡¢BÁ½ÖÖÐͺŵÄË¿½í£¬¹²600Ìõ£¬A¡¢BÁ½ÖÖÐͺŵÄË¿½íÿÌõµÄ³É±¾ºÍÀûÈóÈç±í£¬ÉèÿÌìÉú²úAÐͺÅË¿½íxÌõ£¬¸Ã³§Ã¿Ìì»ñÀûyÔª£®
£¨1£©Çëд³öy¹ØÓÚxµÄº¯Êý¹ØÏµÊ½£»
£¨2£©Èç¹û¸Ã³§Ã¿ÌìÖÁÉÙͶÈë³É±¾26400Ôª£¬ÄÇôÿÌìÖÁÉÙ»ñÀû¶àÉÙÔª£®
| A | B | |
| ³É±¾£¨Ôª/Ìõ£© | 50 | 35 |
| ÀûÈó£¨Ôª/Ìõ£© | 20 | 15 |
£¨2£©Èç¹û¸Ã³§Ã¿ÌìÖÁÉÙͶÈë³É±¾26400Ôª£¬ÄÇôÿÌìÖÁÉÙ»ñÀû¶àÉÙÔª£®
20£®¼ÆËã1¡Â£¨-$\frac{1}{5}$£©µÄ½á¹ûÊÇ£¨¡¡¡¡£©
| A£® | -$\frac{1}{5}$ | B£® | $\frac{1}{5}$ | C£® | -5 | D£® | 5 |