题目内容

6.如图,一次函数y=-$\frac{2}{3}$x-4与正比例函数y=kx的图象交于第三象限内的点A,与y轴交于点B,且AO=AB,则正比例函数的解析式为(  )
A.y=$\frac{3}{4}$xB.y=$\frac{2}{3}$xC.y=$\frac{4}{3}$xD.y=$\frac{5}{6}$x

分析 如图,过点A作AD⊥y轴于点D.根据一次函数解析式求得点B、C的坐标,结合等腰三角形的性质可以求得点D的坐标;通过锐角三角函数的定义求得点A的坐标;最后把点A的坐标代入正比例函数解析式y=kx即可求得k的值.

解答 解:设正比例函数解析式y=kx.
∵y=-$\frac{2}{3}$x-4,
∴B(0,-4),C(-6,0).
∴OC=6,OB=4.
如图,过点A作AD⊥y轴于点D.
又∵AO=AB,
∴OD=BD=2.
∴tan∠CBO=$\frac{OC}{OB}$=$\frac{AD}{BD}$,即$\frac{6}{4}$=$\frac{AD}{2}$,
解得AD=3.
∴A(-3,-2).
把点A的坐标代入y=kx,得
-2=-3k,
解得k=$\frac{2}{3}$.
故该函数解析式为:y=$\frac{2}{3}$x.
故选:B.

点评 本题考查了待定系数法求一次函数解析式.注意:①求点的坐标的方法是先求出这点到两坐标轴的距离,然后根据这点在坐标系中的位置写出这点的坐标.
②以后学了等腰三角形的性质后,作垂线后可直接得到OD=BD.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网