题目内容

3.麒麟区第七中学现有一块空地ABCD如图所示,现计划在空地上种草皮,经测量,∠B=90°,AB=3m,BC=4m,CD=13m,AD=12m.
(1)求出空地ABCD的面积?
(2)若每种植1平方米草皮需要300元,问总共需投入多少元?

分析 (1)连接AC,在直角三角形ABC中可求得AC的长,由AC、AD、DC的长度关系可得三角形DAC为一直角三角形,DA为斜边;由此看,四边形ABCD由Rt△ABC和Rt△DAC构成,则容易求出面积;
(2)面积乘以单价即可得出结果.

解答 解:(1)连接AC,
在Rt△ABC中,AC2=AB2+BC2=32+42=52
∴AC=5.
在△DAC中,CD2=132,AD2=122
而122+52=132
即AC2+AD2=CD2
∴∠DCA=90°,
S四边形ABCD=S△BAC+S△DAC=$\frac{1}{2}$•BC•AB+$\frac{1}{2}$DC•AC,
=$\frac{1}{2}$×4×3+$\frac{1}{2}$×12×5=36(m2);
答:空地ABCD的面积为36m2
(2)36×300=10800(元),.
答:总共需要投入10800元.

点评 本题考查了勾股定理及其逆定理的相关知识,通过勾股定理由边与边的关系也可证明直角三角形,这样解题较为简单,求出四边形ABCD的面积是解题关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网