题目内容

3.如图,在正方形ABCD中,E,F,G,H分别在它的四条边上,且AE=BF=CG=DH.四边形EFGH是什么特殊四边形?你是如何判断的?

分析 是正方形.可通过证明△AEH,△DHG,△CGF,△BFE全等,先得出四边形EFGH是菱形,再证明四边形EFGH中一个内角为90°,从而得出四边形EFGH是正方形的结论.

解答 解:四边形EFGH是正方形.
证明:∵AE=BF=CG=GH,
∴AH=DG=CF=BE.
∵∠A=∠B=∠C=∠D=90°,
∴△AEH≌△DHG≌△CGF≌△BFE,
∴EF=EH=HG=GF,∠EHA=∠HGD.
∴四边形EFGH是菱形.
∵∠EHA=∠HGD,∠HGD+∠GHD=90°,
∴∠EHA+∠GHD=90°.
∴∠EHG=90°.
∴四边形EFGH是正方形.

点评 本题主要考查了全等三角形的判定及性质和正方形的性质和判定,熟练掌握判定定理是解答此题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网