题目内容

6.如图,在Rt△ABC中,∠C=90°,BC=6,AC=8,那么sinA的值等于(  )
A.$\frac{3}{4}$B.$\frac{4}{3}$C.$\frac{3}{5}$D.$\frac{4}{5}$

分析 根据勾股定理,可得AB的长,根据正弦函数等于对边比斜边,可得答案.

解答 解:由勾股定理,得
AB=$\sqrt{A{C}^{2}+B{C}^{2}}$=10.
由正弦函数的定义,得
sinA=$\frac{BC}{AB}$=$\frac{6}{10}$=$\frac{3}{5}$,
故选:C.

点评 本题考查了锐角三角函数的定义,先求出斜边,再求正弦函数.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网