题目内容

4.在Rt△ABC中,∠C=90°,AC=4,BC=3,则以2.5为半径的⊙C与直线AB的位置关系是相交.

分析 过C作CD⊥AB于D,根据勾股定理求出AB,根据三角形的面积公式求出CD,得出d<r,根据直线和圆的位置关系即可得出结论.

解答 解:以2.5为半径的⊙C与直线AB的位置关系是相交;理由如下:
过C作CD⊥AB于D,如图所示:
∵在Rt△ABC中,∠C=90,AC=4,BC=3,
∴由勾股定理得:AB=$\sqrt{A{C}^{2}+B{C}^{2}}$=5,
∵△ABC的面积=$\frac{1}{2}$AC×BC=$\frac{1}{2}$AB×CD,
∴3×4=5CD,
∴CD=2.4<2.5,
即d<r,
∴以2.5为半径的⊙C与直线AB的关系是相交,
故答案为:相交.

点评 本题考查了勾股定理,三角形的面积,直线和圆的位置关系的应用;解此题的关键是能正确作出辅助线,并进一步求出CD的长,注意:直线和圆的位置关系有:相离,相切,相交.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网