题目内容

10.如图,AB是⊙O的直径,C是⊙O上的一点,∠CAE=∠B,你认为AE与⊙O相切吗?为什么?

分析 根据圆周角定理得出∠ACB=90°,即可求得∠BAC+∠B=90°,由∠CAE=∠B,得出∠BAC+∠CAE=90°,即∠BAE=90°,即可证得AE是⊙O的切线.

解答 解:AE与⊙O相切,
理由:∵AB是⊙O的直径,
∴∠ACB=90°
∴∠BAC+∠B=90°,
∵∠CAE=∠B,
∴∠BAC+∠CAE=90°,即∠BAE=90°,
∴AE是⊙O的切线.

点评 本题考查了圆周角定理和切线的判定,熟练掌握切线的判定定理是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网