题目内容

1.(1)$\sqrt{27}$-$\sqrt{12}$+$\sqrt{\frac{1}{3}}$;             
(2)($\sqrt{48}$-$\sqrt{75}$)×$\sqrt{1\frac{1}{3}}$.
(3)$({\sqrt{5}-2\sqrt{3}})({\sqrt{5}+2\sqrt{3}})+\frac{{\sqrt{12}+3}}{{\sqrt{3}}}$           
(4)($\sqrt{3}-\sqrt{2})(\sqrt{2}+\sqrt{3})$.

分析 (1)先把各二次根式化为最简二次根式,然后合并即可;
(2)先把各二次根式化为最简二次根式,然后把括号内合并后进行二次根式的乘法运算;
(3)根据平方差公式和二次根式的除法法则运算;
(4)利用完全平方公式计算.

解答 解:(1)原式=3$\sqrt{3}$-2$\sqrt{3}$+$\frac{\sqrt{3}}{3}$=$\frac{4\sqrt{3}}{3}$;
(2)原式=(4$\sqrt{3}$-5$\sqrt{3}$)×$\frac{2\sqrt{3}}{3}$
=-$\sqrt{3}$×$\frac{2\sqrt{3}}{3}$
=-2;
(3)原式=5-12+2+$\sqrt{3}$
=-5+$\sqrt{3}$;
(4)原式=3-2$\sqrt{6}$+2
=5-2$\sqrt{6}$.

点评 本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网