题目内容
考点:平面展开-最短路径问题,圆锥的计算
专题:
分析:最短距离的问题首先应转化为圆锥的侧面展开图的问题,转化为平面上两点间的距离的问题.需先算出圆锥侧面展开图的扇形半径.看如何构成一个直角三角形,然后根据勾股定理进行计算.
解答:
解:圆锥的底面周长是6π,则6π=
,
解得:n=120°,
即圆锥侧面展开图的圆心角是120度.
∴∠APB=60°,
∵PA=PB,
∴△PAB是等边三角形,
∵C是PB中点,
∴AC⊥PB,
∴∠ACP=90度.
∵在圆锥侧面展开图中AP=9,PC=
,
∴在圆锥侧面展开图中AC=
=
(cm).
故A点到 C点在圆锥的侧面上的最短距离为
cm.
| nπ×9 |
| 180 |
解得:n=120°,
即圆锥侧面展开图的圆心角是120度.
∴∠APB=60°,
∵PA=PB,
∴△PAB是等边三角形,
∵C是PB中点,
∴AC⊥PB,
∴∠ACP=90度.
∵在圆锥侧面展开图中AP=9,PC=
| 9 |
| 2 |
∴在圆锥侧面展开图中AC=
| AP2-PC2 |
9
| ||
| 2 |
故A点到 C点在圆锥的侧面上的最短距离为
9
| ||
| 2 |
点评:本题考查了圆锥的计算,需注意最短距离的问题最后都要转化为平面上两点间的距离的问题.
练习册系列答案
相关题目