题目内容
2.掷一枚质地均匀的正方体骰子,骰子的六个面上的点数分别为1到6的整数,那么掷出的点数小于3的概率为$\frac{1}{3}$.分析 点数小于3的有2种情况,除以总个数6即为向上的一面的点数小于3的概率.
解答 解:∵共有6种情况,点数小于3的有2种,
∴P(点数小于3)=$\frac{2}{6}=\frac{1}{3}$.
故答案为$\frac{1}{3}$
点评 本题考查的是概率的求法的运用.如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=$\frac{m}{n}$.
练习册系列答案
相关题目
13.用配方法解方程3x2-$\frac{12}{5}$x-1=0时,变形正确的是( )
| A. | (x+$\frac{2}{5}$)2-$\frac{37}{25}$=0 | B. | 3(x+$\frac{2}{5}$)2-$\frac{37}{25}$=0 | C. | (x-$\frac{2}{5}$)2-$\frac{37}{25}$=0 | D. | 3(x-$\frac{2}{5}$)2-$\frac{37}{25}$=0 |
10.在八边形内任取一点,把这个点与八边形各顶点分别连接可得到几个三角形( )
| A. | 5个 | B. | 6个 | C. | 7个 | D. | 8个 |
17.
如图,直线y=$\frac{1}{4}$x与双曲线y=$\frac{4}{x}$相交于(-4,-1)和(4,1),则不等式$\frac{1}{4}$x>$\frac{4}{x}$的解集为( )
| A. | -4<x<0或x>4 | B. | -4>x或0<x<4 | C. | -4<x<4且x≠0 | D. | x<-4或x>4 |