题目内容
5.(1)求反比例函数的表达式;
(2)求点D的坐标.
分析 (1)由点F的坐标求出点A的坐标,再根据AC求出OC,BC,从而求出点E的坐标即可;
(2)先确定出直线AF解析式,和反比例函数解析式联立求出点D坐标.
解答 解:(1)∵等腰直角△ABC的直角边AC在x轴上,F(0,$\frac{\sqrt{2}}{2}$),
∴OA=OF=$\frac{\sqrt{2}}{2}$,
∴A(-$\frac{\sqrt{2}}{2}$,0),
∵AC=2$\sqrt{2}$,
∴OC=AC-OA=$\frac{3\sqrt{2}}{2}$,
∵BC=AC,BE=2CE,
∴CE=$\frac{1}{3}$BC=$\frac{1}{3}$×2$\sqrt{2}$=$\frac{2\sqrt{2}}{3}$,
∴E($\frac{3\sqrt{2}}{2}$,$\frac{2\sqrt{2}}{3}$),
∴k=$\frac{3\sqrt{2}}{2}$×$\frac{2\sqrt{2}}{3}$=2,
∴反比例函数解析式为y=$\frac{2}{x}$,
(2)∵A(-$\frac{\sqrt{2}}{2}$,0),F(0,$\frac{\sqrt{2}}{2}$),
∴直线AF解析式为y=x+$\frac{\sqrt{2}}{2}$,
∴$\left\{\begin{array}{l}{y=\frac{2}{x}}\\{y=x+\frac{\sqrt{2}}{2}}\end{array}\right.$,
$\left\{\begin{array}{l}{x=\frac{-\sqrt{2}+\sqrt{34}}{4}}\\{y=\frac{\sqrt{34}+\sqrt{2}}{4}}\end{array}\right.$或$\left\{\begin{array}{l}{x=\frac{-\sqrt{2}-\sqrt{34}}{4}}\\{y=-\frac{\sqrt{34}-\sqrt{2}}{4}}\end{array}\right.$(舍),
∴D($\frac{-\sqrt{2}+\sqrt{34}}{4}$,$\frac{\sqrt{34}+\sqrt{2}}{4}$).
点评 此题是待定系数法法求反比例解析式,主要考查了待定系数法,函数图象的交点坐标,解本题的关键是求出反比例函数解析式.
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
| A. | 当m≠1时,a+b>am2+bm | |
| B. | 若a${x}_{1}^{2}$+bx1=a${x}_{2}^{2}$+bx2,且x1≠x2,则x1+x2=2 | |
| C. | a-b+c>0 | |
| D. | abc<0 |
| A. | 圆上 | B. | 圆内 | ||
| C. | 圆外 | D. | 以上三种都有可能 |
| A. | 4a+5b=9ab | B. | (a3)5=a15 | C. | a4•a2=a8 | D. | a6÷a3=a2 |