ÌâÄ¿ÄÚÈÝ
7£®Èçͼ£¬Õý·½ÐÎOABCµÄ±ßOA¡¢OCÔÚ×ø±êÖáÉÏ£¬µãBµÄ×ø±êΪ£¨4£¬4£©£¬E¡¢F·Ö±ðÊÇOA±ß¡¢AB±ßÉϵ͝µã£¬Á¬½ÓEF£®£¨1£©Èçͼ1£¬Èç¹ûOE=AF=1£¬ÇóÖ±ÏßEFµÄ½âÎöʽ£»
£¨2£©Èçͼ2£¬ÕÛµþÕý·½ÐÎOABC£¬Èç¹ûA¡¢BÁ½µãͬʱÂäÔÚCEÉϵĵãOλÖã¬ÇóµãGµÄ×ø±ê£»
£¨3£©Èçͼ3£¬E¡¢FÔÚÔ˶¯¹ý³ÌÖУ¬Èç¹û±£³Ö¡ÏECF=45¡ã£¬Ì½Çó¡÷AEFµÄÖܳ¤ÊÇ·ñ»á·¢Éú¸Ä±ä£¿Èô²»±ä£¬Çó³öËüµÄÖµ£»Èô¸Ä±ä£¬ËµÃ÷ÀíÓÉ£®
·ÖÎö £¨1£©ÓÉËıßÐÎOABCÊÇÕý·½ÐΣ¬µãBµÄ×ø±êΪ£¨4£¬4£©£¬OE=AF=1£¬µÃµ½µãE£¬FµÄ×ø±ê£¬´úÈëÇó½â£»
£¨2£©ÓÉÕÛµþµÄÐÔÖʵãºAE=GE£¬BF=GF=AF£¬CG=BC=4£¬ÔÚÖ±½ÇÈý½ÇÐÎCOEÖУ¬Óɹ´¹É¶¨ÀíÁз½³ÌÇó³öGE£¬ÔÙÓÉÈý½ÇÐÎÏàËÆµÃµ½µãGµÄ×ø±ê£»
£¨3£©ÔÚxÖáÉϽØÈ¡OM=BF£¬Á¬½ÓCM£¬¹¹ÔìÈ«µÈÈý½ÇÐΣ¬¸ù¾Ý¡ÏECF=45¡ã£¬µÃµ½¡ÏMCE=¡ÏMCO+¡ÏOCE=45¡ã£¬Óֵõ½Ò»¶ÔÈ«µÈµÄÈý½ÇÐΣ¬µÃµ½Ï߶εĹØÏµ£¬Ö¤µÃ¡÷AEFµÄÖܳ¤=8ÊǸö¶¨Öµ£¬ÓÚÊǵý⣮
½â´ð
½â£º£¨1£©Èçͼ1¡ßËıßÐÎOABCÊÇÕý·½ÐΣ¬µãBµÄ×ø±êΪ£¨4£¬4£©£¬
¡àOA=AB=4£¬
¡ßOE=AF=1£¬
¡àE£¨1£¬0£©£¬F£¨4£¬1£©£¬
ÉèÖ±ÏßEFµÄ½âÎöʽ£ºy=kx+b£¬
¡à$\left\{\begin{array}{l}{0=k+b}\\{1=4k+b}\end{array}\right.$£¬
½âµÃ£º$\left\{\begin{array}{l}{k=\frac{1}{3}}\\{b=\frac{1}{3}}\end{array}\right.$£¬
¡àÖ±ÏßEFµÄ½âÎöʽ£ºy=$\frac{1}{3}x$+$\frac{1}{3}$£»![]()
£¨2£©Èçͼ2ÓÉÕÛµþµÄÐÔÖʵãºAE=GE£¬BF=GF=AF£¬CG=BC=4£¬
ÉèAE=GE=x£¬ÔòOE=4-x£¬CE=4+x£¬
¡à£¨4-x£©2+42=£¨4+x£©2£¬
¡àx=1£¬¡àAE=GE=1£¬
¹ýµãG×÷GH¡ÍOAÓÚH£¬
¡àGH¡ÎOC£¬¡à$\frac{GH}{OC}$=$\frac{EH}{OE}$=$\frac{EG}{EC}$=$\frac{1}{5}$£¬
¡àGH=$\frac{4}{5}$£¬EH=$\frac{3}{5}$£¬
¡àOH=$\frac{12}{5}$£¬
¡àG£¨$\frac{12}{5}$£¬$\frac{4}{5}$£©£»
£¨3£©Èçͼ3ÔÚxÖáÉϽØÈ¡OM=BF£¬Á¬½ÓCM£¬
ÔÚ¡÷COMÓë¡÷BCFÖУ¬
$\left\{\begin{array}{l}{OC=BC}\\{¡ÏMOC=¡ÏB}\\{OM=BF}\end{array}\right.$£¬![]()
¡à¡÷OMC¡Õ¡÷BFC£¨SAS£©£¬
¡àCM=CF£¬¡ÏMCO=¡ÏFCB£¬
¡à¡ÏMCF=FCE=45¡ã£¬
ÔÚ¡÷MCEÓë¡÷FCEÖУ¬
$\left\{\begin{array}{l}{CM=CF}\\{¡ÏMCE=¡ÏFCE}\\{CE=CE}\end{array}\right.$£¬
¡à¡÷MCE¡Õ¡÷FCE£¨SAS£©£¬
¡àME=EF£¬
¡÷AEFµÄÖܳ¤=AF+EF+AE=ME+AE+AF=AE+OE+AF+BF=8£¬
¡àE¡¢FÔÚÔ˶¯¹ý³ÌÖУ¬Èç¹û±£³Ö¡ÏECF=45¡ã£¬¡÷AEFµÄÖܳ¤²»»á·¢Éú¸Ä±ä£®
µãÆÀ ±¾Ì⿼²éÁËÕý·½ÐεÄÐÔÖÊ£¬È«µÈÈý½ÇÐεÄÅж¨ºÍÐÔÖÊ£¬ÏàËÆÈý½ÇÐεÄÅж¨ÓëÐÔÖÊ£¬´ý¶¨ÏµÊý·¨ÇóÒ»´Îº¯ÊýµÄ½âÎöʽµÈ֪ʶµã£®