ÌâÄ¿ÄÚÈÝ
17£®ÔĶÁ²ÄÁÏ£º·½³Ìx2-x-2=0ÖУ¬Ö»º¬ÓÐÒ»¸öδ֪ÊýÇÒδ֪ÊýµÄ´ÎÊýΪ2£®ÏñÕâÑùµÄ·½³Ì½Ð×öÒ»Ôª¶þ´Î·½³Ì£®°Ñ·½³ÌµÄ×ó±ß·Ö½âÒòʽµÃµ½£¨x-2£©£¨x+1£©=0£®ÎÒÃÇÖªµÀÁ½¸öÒòʽ³Ë»ýΪ0£¬ÆäÖÐÓÐÒ»¸öÒòʽΪ0¼´¿É£¬Òò´Ë·½³Ì¿ÉÒÔת»¯Îª£ºx-2=0»òx+1=0£®
½âÕâÁ½¸öÒ»´Î·½³ÌµÃ£ºx=2»òx=-1£®
ËùÒÔÔ·½³ÌµÄ½âΪ£ºx=2»òx=-1£®
ÉÏÊö½«·½³Ìx2-x-2=0ת»¯Îªx-2=0»òx+1µÄ¹ý³Ì£¬Êǽ«¶þ´Î½µÎªÒ»´ÎµÄ¡°½µ´Î¡±¹ý³Ì£¬´Ó¶øÊ¹µÃÎÊÌâµÃµ½½â¾ö£®
·ÂÕÕÉÏÃæ½µ´ÎµÄ·½·¨£¬½â¾öÏÂÁÐÎÊÌ⣺
£¨1£©½â·½³Ìx2-3x=0£»
£¨2£©2a2-a-3=0£»
£¨3£©½â·½³Ì×飺$\left\{\begin{array}{l}{{x}^{2}-9{y}^{2}=0}\\{x+y=4}\end{array}\right.$£®
·ÖÎö £¨1£©·½³Ì×ó±ß·Ö½âÒòʽºó£¬ÀûÓÃÁ½ÊýÏà³Ë»ýΪ0Á½ÒòʽÖÐÖÁÉÙÓÐÒ»¸öΪ0ת»¯ÎªÁ½¸öÒ»ÔªÒ»´Î·½³ÌÀ´Çó½â£»
£¨2£©·½³Ì×ó±ß·Ö½âÒòʽºó£¬ÀûÓÃÁ½ÊýÏà³Ë»ýΪ0Á½ÒòʽÖÐÖÁÉÙÓÐÒ»¸öΪ0ת»¯ÎªÁ½¸öÒ»ÔªÒ»´Î·½³ÌÀ´Çó½â£»
£¨3£©·½³Ì×éµÚÒ»¸ö·½³Ì×ó±ß·Ö½âÒòʽºó£¬ÀûÓÃÁ½ÊýÏà³Ë»ýΪ0Á½ÒòʽÖÐÖÁÉÙÓÐÒ»¸öΪ0ת»¯ÎªÁ½¸öÒ»ÔªÒ»´Î·½³Ì£¬·Ö±ðÁªÁ¢Çó½â¼´¿É£®
½â´ð ½â£º£¨1£©·½³Ì±äÐεãºx£¨x-3£©=0£¬
¿ÉµÃx=0»òx-3=0£¬
½âµÃ£ºx=0»òx=3£»
£¨2£©·½³Ì±äÐε㺣¨2a-3£©£¨a+1£©=0£¬
¿ÉµÃ2a-3=0»òa+1=0£¬
½âµÃ£ºa=1.5»òa=-1£»
£¨3£©·½³Ì×éµÚÒ»¸ö·½³Ì±äÐε㺣¨x+3y£©£¨x-3y£©=0£¬
¿ÉµÃx+3y=0»òx-3y=0£¬
ÁªÁ¢µÃ£º$\left\{\begin{array}{l}{x+3y=0}\\{x+y=4}\end{array}\right.$»ò$\left\{\begin{array}{l}{x-3y=0}\\{x+y=4}\end{array}\right.$£¬
½âµÃ£º$\left\{\begin{array}{l}{x=6}\\{y=-2}\end{array}\right.$»ò$\left\{\begin{array}{l}{x=3}\\{y=1}\end{array}\right.$£®
µãÆÀ ´ËÌ⿼²éÁËÒòʽ·Ö½âµÄÓ¦Óã¬ÅªÇåÌâÖнⷽ³ÌµÄ·½·¨ÊǽⱾÌâµÄ¹Ø¼ü£®
| A£® | 4£¬-4£¬-5£¬13 | B£® | 4£¬-4£¬-5£¬-13 | C£® | 4£¬-4£¬5£¬13 | D£® | -4£¬5£¬-5£¬13 |
| A£® | 10 | B£® | 20 | C£® | 10+2$\sqrt{2}$ | D£® | 10+$\sqrt{2}$ |
| A£® | $\frac{16}{3}$ | B£® | 9 | C£® | 12 | D£® | $\frac{64}{3}$ |
| A£® | 8 | B£® | -8 | C£® | 9 | D£® | -9 |
| A£® | Èñ½ÇÈý½ÇÐÎ | B£® | Ö±½ÇÈý½ÇÐÎ | C£® | ¶Û½ÇÈý½ÇÐÎ | D£® | ÎÞ·¨È·¶¨ |
| A£® | a5 | B£® | a9 | C£® | a6 | D£® | a-1 |