题目内容

14.如图,将一长方形纸片沿EF折叠后,点DC分别落在点D′、C′的位置,若∠EFB=68°,则∠AED′=44°.

分析 先根据两直线平行,内错角相等,由AD∥BC得到∠DEF=∠EFB=68°,再利用折叠的性质得到∠D′EF=∠DEF=68°,然后利用平角的定义求解.

解答 解:∵AD∥BC,
∴∠DEF=∠EFB=68°,
∵长方形纸片沿EF折叠后,点DC分别落在点D′、C′的位置,
∴∠D′EF=∠DEF=68°,
∴∠∠AED′=180°-∠D′EF-∠DEF=180°-2×68°=44°.
故答案为44°.

点评 本题考查了平行线性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.也考查了折叠的性质.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网