题目内容

15.如图,有一张△ABC纸片,AC=8,∠C=30°,点E在AC边上,点D在边AB上,沿着DE对折,使点A落在BC边上的点F处,则CE的最大值为(  )
A.$\frac{8}{3}$B.$\frac{16}{3}$C.4D.4$\sqrt{3}$

分析 认真审题,可以发现,AC=CE+AE,若要使CE最大,只要使AE最小即可,连接EF,则:EF=AE,过只要EF最小即可,据此即可得解.

解答 解:如图,连接EF,

当EF⊥BC时,EF最短,即CE最长,
∵∠C=30°,
∴EF=$\frac{1}{2}$CE,
∵沿着DE对折,使点A落在BC边上的点F处,
∴EF=AE,
∴EF+CE=AC=8,即:$\frac{1}{2}CE+CE$=8,
解得:CE=$\frac{16}{3}$,
∴CE的最大值为$\frac{16}{3}$.
故选B.

点评 本题主要考查了垂线段最短,以及在翻折变换时,变换前后的线段和角度不变,还考查了解直角三角形的知识,有一定的综合性,要注意认真总结.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网