题目内容

如图,△ABC经过平移到△DEF位置,它们的重叠部分的面积是△ABC的一半,若BC=,则BE=

【答案】-1.

【解析】由题意可知:OE∥AB,

∴△OEC∽△ABC,

,即,解得:EC=1.

∴BE=BC-EC=.

【题型】填空题
【结束】
14

菱形的周长为16,两邻角度数的比为1:2,此菱形的面积为 .

8 . 【解析】如图,由题意可知,在菱形ABCD中,∠A+∠ADC=180°,∠A:∠ADC=1:2,AD=AB=, ∴∠A=60°, 过点D作DE⊥AB于点E,则∠DEA=90°, ∴∠ADE=30°, ∴AE=AD=2, ∴DE=, ∴S菱形ABCD=ABDE=.
练习册系列答案
相关题目

如图,正方形ABCD中,M为BC上一点,F是AM的中点,EF⊥AM,垂足为F,交AD的延长线于点E,交DC于点N.

(1)求证:△ABM ∽△EFA;

(2)若AB=12,BM=5,求DE的长.

【答案】(1)证明见解析;(2)4.9.

【解析】试题分析:(1)由正方形的性质得出AB=AD,∠B=90°,AD∥BC,得出∠AMB=∠EAF,再由∠B=∠AFE,即可得出结论;

(2)由勾股定理求出AM,得出AF,由△ABM∽△EFA得出比例式,求出AE,即可得出DE的长.

试题解析:(1)∵四边形ABCD是正方形,

∴AB=AD,∠B=90°,AD∥BC,

∴∠AMB=∠EAF,

又∵EF⊥AM,

∴∠AFE=90°,

∴∠B=∠AFE,

∴△ABM∽△EFA;

(2)∵∠B=90°,AB=12,BM=5,

∴AM==13,AD=12,

∵F是AM的中点,

∴AF=AM=6.5,

∵△ABM∽△EFA,

∴AE=16.9,

∴DE=AE-AD=4.9.

考点:1.相似三角形的判定与性质;2.正方形的性质.

【题型】解答题
【结束】
26

如图,矩形ABCD中,AB=16cm,BC=6cm,点P从点A出发沿AB向点B移动(不与点A、B重合),一直到达点B为止;同时,点Q从点C出发沿CD向点D移动(不与点C、D重合).运动时间设为t秒.

(1)若点P、Q均以3cm/s的速度移动,则:AP=  cm;QC=  cm.(用含t的代数式表示)

(2)若点P为3cm/s的速度移动,点Q以2cm/s的速度移动,经过多长时间PD=PQ,使△DPQ为等腰三角形?

(3)若点P、Q均以3cm/s的速度移动,经过多长时间,四边形BPDQ为菱形?

(1)3t,3t;(2)当t=2时,PD=PQ,△DPQ为等腰三角形;(3)当 时,四边形BPDQ是菱形. 【解析】分析:(1)根据路程=速度×时间,即可解决问题.(2)过点P作PE⊥CD于点E,利用等腰三角形三线合一的性质,DE=DQ,列出方程即可解决问题.(3)当PD=PB时,四边形BPDQ是菱形,列出方程即可解决问题. 本题解析:(1) , ; (2)过点P作PE⊥CD于点...

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网