题目内容
(1)在剩余的顶点B、C、D、E、F、H中,连接两个顶点,使连接的线段与AG平行,并说明理由;
(2)两边延长AB、CD、EF、GH,使延长线分别交于点P、Q、M、N,若AB=2,求四边形PQMN的面积.
考点:正多边形和圆,全等三角形的判定与性质,正方形的判定
专题:
分析:(1)利用已知得出正八边形,它的内角都为135°,再利用正八边形ABCDEFGH关于直线BF对称,得出∠2+∠3=180°,进而得出答案;
(2)根据题意得出△PAH≌△QCB≌△MDE,则PA=QB=QC=MD.即PQ=QM,故四边形PQMN是正方形,进而求出PQ的长即可得出答案.
(2)根据题意得出△PAH≌△QCB≌△MDE,则PA=QB=QC=MD.即PQ=QM,故四边形PQMN是正方形,进而求出PQ的长即可得出答案.
解答:
解:(1)连接BF,则有BF∥AG.
理由如下:
∵ABCDEFGH是正八边形,
∴它的内角都为135°.
又∵HA=HG,
∴∠1=22.5°,
从而∠2=135°-∠1=112.5°.
由于正八边形ABCDEFGH关于直线BF对称,
∴∠3=
×135°=67.5°
即∠2+∠3=180°,故BF∥AG.
(2)根据题设可知∠PHA=∠PAH=45°,
∴∠P=90°,同理可得∠Q=∠M=90°,
∴四边形PQMN是矩形.
又∵∠PHA=∠PAH=∠QBC=∠QCB=∠MDE=∠MED=45°,AH=BC=DE,
∴△PAH≌△QCB≌△MDE,
∴PA=QB=QC=MD.即PQ=QM,
故四边形PQMN是正方形.
在Rt△PAB中,∵∠PAH=45°,AB=2,
∴PA=AB•sin45°=2×
=
,
∴PQ=PA+AB+BQ=
+2+
=2
+2.
故S四边形PQMN=(2
+2)2=12+8
.
理由如下:
∵ABCDEFGH是正八边形,
∴它的内角都为135°.
又∵HA=HG,
∴∠1=22.5°,
从而∠2=135°-∠1=112.5°.
由于正八边形ABCDEFGH关于直线BF对称,
∴∠3=
| 1 |
| 2 |
即∠2+∠3=180°,故BF∥AG.
(2)根据题设可知∠PHA=∠PAH=45°,
∴∠P=90°,同理可得∠Q=∠M=90°,
∴四边形PQMN是矩形.
又∵∠PHA=∠PAH=∠QBC=∠QCB=∠MDE=∠MED=45°,AH=BC=DE,
∴△PAH≌△QCB≌△MDE,
∴PA=QB=QC=MD.即PQ=QM,
故四边形PQMN是正方形.
在Rt△PAB中,∵∠PAH=45°,AB=2,
∴PA=AB•sin45°=2×
| ||
| 2 |
| 2 |
∴PQ=PA+AB+BQ=
| 2 |
| 2 |
| 2 |
故S四边形PQMN=(2
| 2 |
| 2 |
点评:此题主要考查了正多边形和圆以及全等三角形的判定与性质等知识,得出PQ的长是解题关键.
练习册系列答案
相关题目