题目内容
(1)先化简,再求值:(1-
)÷
,其中a=
-2.
(2)解方程:x2+4x-1=0.
| 1 |
| a |
| a2-1 |
| a |
| 3 |
(2)解方程:x2+4x-1=0.
考点:分式的化简求值,解一元二次方程-配方法
专题:
分析:(1)原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,将a的值代入计算即可求出值.
(2)利用配方法把x2+4x-1=0化为(x+2)2-5=0解方程.
(2)利用配方法把x2+4x-1=0化为(x+2)2-5=0解方程.
解答:解:(1)(1-
)÷
,
=
•
,
=
,
当a=
-2时,原式=
=
,
(2)x2+4x-1=0
(x+2)2-5=0
x+2=±
x=-2±
.
| 1 |
| a |
| a2-1 |
| a |
=
| a-1 |
| a |
| a |
| (a+1)(a-1) |
=
| 1 |
| a+1 |
当a=
| 3 |
| 1 | ||
|
| ||
| 2 |
(2)x2+4x-1=0
(x+2)2-5=0
x+2=±
| 5 |
x=-2±
| 5 |
点评:此题考查了分式的化简求值及解一元一次方程,熟练掌握运算法则是解本题的关键.
练习册系列答案
相关题目
| 5 |
| 3 |
| 4 |
| A、36 | B、48 |
| C、55 | D、以上答案都不对 |