题目内容

设m是不小于-1的实数,使得关于x的方程x2+2(m-2)x+m2-3m+3=0有两个不相等的实数根x1,x2
(1)若
1
x1
+
1
x2
=1,求
1
3-2m
的值;
(2)求
mx1
1-x1
+
mx2
1-x2
-m2的最大值.
考点:根与系数的关系,根的判别式,二次函数的最值
专题:代数综合题
分析:(1)首先根据根的判别式求出m的取值范围,利用根与系数的关系,求出符合条件的m的值;
(2)把利用根与系数的关系得到的关系式代入代数式,细心化简,结合m的取值范围求出代数式的最大值.
解答:解:∵方程有两个不相等的实数根,
∴△=b2-4ac=4(m-2)2-4(m2-3m+3)=-4m+4>0,
∴m<1,
结合题意知:-1≤m<1.

(1)∵x1+x2=-2(m-2),x1x2=m2-3m+3,
1
x1
+
1
x2
=
x1+x2
x1x2
=
-2(m-2)
m2-3m+3
=1
解得:m1=
1-
5
2
,m2=
1+
5
2
(不合题意,舍去)
1
3-2m
=
5
-2.

(2)
mx1
1-x1
+
mx2
1-x2
-m2
=
m(x1+x2)-2mx1x2
1-(x1+x2)+x1x2
-m2
=-2(m-1)-m2
=-(m+1)2+3.
当m=-1时,最大值为3.
点评:此题考查根与系数的关系,一元二次方程的根的判别式△=b2-4ac来求出m的取值范围;解答此题的关键是熟知一元二次方程根与系数的关系:x1+x2=-
b
a
,x1x2=
c
a
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网