题目内容
13.列方程(组)解应用题:在3月12日植树节活动中,某校七年级(1)班和(2)班共植树52棵,其中七年级(1)班比(2)班多植树8棵,两班各植树多少棵?
分析 设七(1)班植树x棵,七(2)班植树y棵,根据“七年级(1)班和(2)班共植树52棵,其中七年级(1)班比(2)班多植树8棵”列方程组求解可得.
解答 解:设七(1)班植树x棵,七(2)班植树y棵,
根据题意列方程组,得:$\left\{\begin{array}{l}{x+y=52}\\{x-y=5}\end{array}\right.$,
解得:$\left\{\begin{array}{l}{x=30}\\{y=22}\end{array}\right.$,
答:七(1)班植树30棵,七(2)班植树22棵.
点评 本题主要考查二元一次方程组的应用,根据题意确定相等关系,并列出方程是解题的关键.
练习册系列答案
相关题目
1.问题提出:
如图,用水平线和竖直线将平面分成若干个边长为1的小正方形格子,小正方形的顶点叫格点,以格点为顶点的多边形叫格点多边形.设格点多边形的面积为y,它各边上格点个数之和为x,它内部格点数为n,那么y与x,n有什么数量关系?
问题探究:为解决上述问题,我们采取一般问题特殊化的策略,从最简单的情形入手:
探究一:当格点多边形内部的格点数n=0时,格点多边形的面积y与各边上的格点个数之和x之间的数量关系.
如图①,图②,图③都是n=0时的格点多边形,y与x,n的数量如下表:
分析 表格中数据,可知当n=0时,y与x之间的关系式为y=$\frac{1}{2}$x-1.
探究二:当格点多边形内部的格点数n=1时,格点多边形的面积y与各边上的格点个数之和x之间的数量关系.
如图④,图⑤,图⑥都是n=1时的格点多边形,请完成下表:
分析表格中数据,可知当n=1时,y与x之间的关系式为y=$\frac{1}{2}$x.
探究三:如图⑦,图⑧,图⑨都是n=2时的格点多边形,类比上述探究方法,可知n=2时,y与x之间的关系式为y=$\frac{1}{2}$x+1.

问题解决:
综上可得:格点多边形的面积y,与它各边上格点个数之和x,内部格点数n之间的关系式为y=$\frac{1}{2}$x+n-1.
结论应用:
请用上面的结论计算下面图中格点多边形的面积.(写出计算过程)
如图,用水平线和竖直线将平面分成若干个边长为1的小正方形格子,小正方形的顶点叫格点,以格点为顶点的多边形叫格点多边形.设格点多边形的面积为y,它各边上格点个数之和为x,它内部格点数为n,那么y与x,n有什么数量关系?
问题探究:为解决上述问题,我们采取一般问题特殊化的策略,从最简单的情形入手:
探究一:当格点多边形内部的格点数n=0时,格点多边形的面积y与各边上的格点个数之和x之间的数量关系.
如图①,图②,图③都是n=0时的格点多边形,y与x,n的数量如下表:
| 图形序号 | 内部格点数n | 各边上格点个数之和x | 面积y |
| ① | 0 | 4 | 1 |
| ② | 0 | 5 | 1.5 |
| ③ | 0 | 6 | 2 |
探究二:当格点多边形内部的格点数n=1时,格点多边形的面积y与各边上的格点个数之和x之间的数量关系.
如图④,图⑤,图⑥都是n=1时的格点多边形,请完成下表:
| 图形序号 | 内部格点数n | 各边上格点个数之和x | 面积y |
| ④ | 1 | 4 | 2 |
| ⑤ | 1 | 5 | 2.5 |
| ⑥ | 1 |
探究三:如图⑦,图⑧,图⑨都是n=2时的格点多边形,类比上述探究方法,可知n=2时,y与x之间的关系式为y=$\frac{1}{2}$x+1.
问题解决:
综上可得:格点多边形的面积y,与它各边上格点个数之和x,内部格点数n之间的关系式为y=$\frac{1}{2}$x+n-1.
结论应用:
请用上面的结论计算下面图中格点多边形的面积.(写出计算过程)
8.若3x=7,3y=$\frac{1}{7}$,则x,y之间的关系为( )
| A. | 互为相反数 | B. | 相等 | C. | 互为倒数 | D. | 无法判断 |
18.计算($\frac{2}{3}}$)2016×(-$\frac{3}{2}}$)2017的结果是( )
| A. | $\frac{2}{3}$ | B. | $-\frac{2}{3}$ | C. | $\frac{3}{2}$ | D. | $-\frac{3}{2}$ |