题目内容

9.如图,正方形ABCD的面积是2,E,F,P分别是AB,BC,AC上的动点,PE+PF的最小值等于$\sqrt{2}$.

分析 过点P作MN∥AD交AB于点M,交CD于点N,根据正方形的性质可得出MN⊥AB,且PM≤PE、PN≤PF,由此即可得出AD≤PE+PF,再由正方形的面积为2即可得出结论.

解答 解:过点P作MN∥AD交AB于点M,交CD于点N,如图所示.
∵四边形ABCD为正方形,
∴MN⊥AB,
∴PM≤PE(当PE⊥AB时取等号),PN≤PF(当PF⊥BC时取等号),
∴MN=AD=PM+PN≤PE+PF,
∵正方形ABCD的面积是2,
∴AD=$\sqrt{2}$.
故答案为:$\sqrt{2}$.

点评 本题考查了正方形的性质,解题的关键是找出AD≤PE+PF.本题属于中档题,难度不大,解决该题型题目时,根据正方形的性质找出PE+PF最小时,三点的位置关系是关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网