题目内容
19.解:结论是DM=EM.
证明:
分析 结论为DM=EM,理由为:过D作DF平行于AE,利用两直线平行同位角相等,内错角相等得到两对角相等,由AB=AC,利用等边对等角得到∠ABC=∠C,等量代换及等角对等边得到DC=DF,由DC=BE,等量代换得到DF=EB,利用AAS得到三角形DFM与三角形EBM全等,利用全等三角形对应边相等即可得证.
解答
解:结论是DM=EM,
证明:过D作DF∥AE,
∴∠DFC=∠ABC,∠DFM=∠EBM,
∵AB=AC,
∴∠ABC=∠C,
∴∠DFC=∠C,
∴DC=DF,
∵DC=BE,
∴DF=BE,
在△DFM和△EBM中,
$\left\{\begin{array}{l}{∠DFM=∠EBM}\\{∠DMF=∠EMB}\\{DF=BE}\end{array}\right.$,
∴△DFM≌△EBM(AAS),
∴DM=EM.
故答案为:DM=EM.
点评 此题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解本题的关键.
练习册系列答案
相关题目
16.
在平行四边形ABCD中,过点D作DE⊥AB与点E,点F在边CD上,DF=BE,连接AF、BF.
(1)求证:四边形BFDE是矩形.
(2)若CF=3,BF=4,DF=5,求证:△ADF是等腰三角形.
(1)求证:四边形BFDE是矩形.
(2)若CF=3,BF=4,DF=5,求证:△ADF是等腰三角形.
8.
如图,在矩形COED中,点D的坐标是(1,3),则CE的长是( )
| A. | 3 | B. | $2\sqrt{2}$ | C. | $\sqrt{10}$ | D. | 4 |