题目内容

12.如图,菱形ABCD在平面直角坐标系中,点A位坐标原点,点B在x轴正半轴上,若点D的坐标为(1,$\sqrt{3}$),则点C的坐标为(3,$\sqrt{3}$).

分析 先利用两点间的距离公式计算出AD=2,再根据菱形的性质得到CD=AD=2,CD∥AB,然后根据平行于x轴的直线上的坐标特征写出C点坐标.

解答 解:∵点D的坐标为(1,$\sqrt{3}$),
∴AD=$\sqrt{{1}^{2}+(\sqrt{3})^{2}}$=2,
∵四边形ABCD为菱形,
∴CD=AD=2,CD∥AB,
∴C点坐标为(3,$\sqrt{3}$).
故答案为(3,$\sqrt{3}$).

点评 本题考查了菱形的性质:菱形具有平行四边形的一切性质;菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;菱形是轴对称图形,它有2条对称轴,分别是两条对角线所在直线.也考查了坐标与图形性质.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网