题目内容
12.分析 先利用两点间的距离公式计算出AD=2,再根据菱形的性质得到CD=AD=2,CD∥AB,然后根据平行于x轴的直线上的坐标特征写出C点坐标.
解答 解:∵点D的坐标为(1,$\sqrt{3}$),
∴AD=$\sqrt{{1}^{2}+(\sqrt{3})^{2}}$=2,
∵四边形ABCD为菱形,
∴CD=AD=2,CD∥AB,
∴C点坐标为(3,$\sqrt{3}$).
故答案为(3,$\sqrt{3}$).
点评 本题考查了菱形的性质:菱形具有平行四边形的一切性质;菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;菱形是轴对称图形,它有2条对称轴,分别是两条对角线所在直线.也考查了坐标与图形性质.
练习册系列答案
相关题目
2.用a、b、c作三角形的三边,其中不能构成的直角三角形的是( )
| A. | b2=(a+c)(a-c) | B. | a:b:c=1:2:$\sqrt{3}$ | C. | a=32,b=42,c=52 | D. | a=6,b=8,c=10 |