题目内容

15.已知x2-4x+1=0,求(1)x2+$\frac{1}{{x}^{2}}$;(2)x3+$\frac{1}{{x}^{3}}$.

分析 (1)将已知条件进行变形得到x+$\frac{1}{x}$=4,由完全平方公式得到x2+$\frac{1}{{x}^{2}}$=14;
(2)根据(1)的结论然后利用立方和公式进行计算即可.

解答 解:(1)∵x2-4x+1=0,
∴x+$\frac{1}{x}$=4,
∴x2+$\frac{1}{{x}^{2}}$=(x+$\frac{1}{x}$)2-2=14;
(2)x3+$\frac{1}{{x}^{3}}$=(x+$\frac{1}{x}$)(x2-1+$\frac{1}{{x}^{2}}$)=52.

点评 本题考查了完全平方公式,立方和公式,熟记公式是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网