题目内容

13.如图,直线l与⊙相切于点D,过圆心O作EF∥l交⊙O于E、F两点,点A是⊙O上一点,连接AE,AF,并分别延长交直线于B、C两点;若⊙的半径R=5,BD=12,则∠ACB的正切值为$\frac{7}{5}$.

分析 连接OD,作EH⊥BC,如图,先利用圆周角定理得到∠A=90°,再利用等角的余角相等得到∠BEH=∠C,接着根据切线的性质得到OD⊥BC,易得四边形EHOD为正方形,则EH=OD=OE=HD=5,所以BH=7,然后根据正切的定义得到tan∠BEH=$\frac{7}{5}$,从而得到tan∠ACB的值.

解答 解:连接OD,作EH⊥BC,如图,
∵EF为直径,
∴∠A=90°,
∵∠B+∠C=90°,∠B+∠BEH=90°,
∴∠BEH=∠C,
∵直线l与⊙相切于点D,
∴OD⊥BC,
而EH⊥BC,EF∥BC,
∴四边形EHOD为正方形,
∴EH=OD=OE=HD=5,
∴BH=BD-HD=7,
在Rt△BEH中,tan∠BEH=$\frac{BH}{EH}$=$\frac{7}{5}$,
∴tan∠ACB=$\frac{7}{5}$.
故答案为$\frac{7}{5}$.

点评 本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了正切的定义.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网