ÌâÄ¿ÄÚÈÝ
4£®Èçͼ¢ÙÊÇÒ»¸ö³¤Îª2m¡¢¿íΪ2nµÄ³¤·½ÐΣ¬ÑØÍ¼ÖÐÐéÏßÓüôµ¶Æ½¾ù·Ö³ÉËÄ¿éС³¤·½ÐΣ¬È»ºó°´Í¼¢ÚµÄÐÎ״Χ³ÉÒ»¸öÕý·½ÐΣ®£¨1£©Í¼¢ÚÖеÄÒõÓ°²¿·ÖÃæ»ýΪ£¨m+n£©2-4mn»ò£¨m-n£©2£»
£¨2£©¹Û²ìͼ¢Ú£¬ÇëÄãд³öÈý¸ö´úÊýʽ£¨m+n£©2£¬£¨m-n£©2£¬mnÖ®¼äµÄµÈÁ¿¹ØÏµÊÇ£¨m+n£©2-4mn=£¨m-n£©2£®
£¨3£©Êµ¼ÊÉÏÓÐÐí¶à´úÊýºãµÈʽ¿ÉÒÔÓÃͼÐεÄÃæ»ýÀ´±íʾ£¬Èçͼ¢Û£¬Ëü±íʾÁË£¨2m+n£©£¨m+n£©=2m2+3mn+n2£®
£¨4£©ÊÔ»³öÒ»¸ö¼¸ºÎͼÐΣ¬Ê¹ËüµÄÃæ»ýÄܱíʾ£¨m+n£©£¨m+3n£©=m2+4mn+3n2£®£¨ÔÚͼÖбê³öÏàÓ¦µÄ³¤¶È£©
·ÖÎö £¨1£©¸ù¾ÝͼÐαíʾ³öÒõÓ°²¿·ÖµÄÃæ»ý¼´¿É£»
£¨2£©¸ù¾Ý£¨1£©ÖеĽá¹ûµÃ³ö¼´¿É£»
£¨3£©¸ù¾Ý´ó³¤·½ÐÎÃæ»ýµÈÓÚ³¤³ËÒÔ¿í»ò5¸ö¾ØÐÎÃæ»ýºÍµÄÁ½ÖÖ²»Í¬Ëã·¨¿ÉÁгöµÈʽ£»
£¨4£©»³ö³¤m+nºÍ¿ím+3nµÄ¾ØÐΣ¬ÔÙ·Ö³É8¸ö¾ØÐμ´¿É£®
½â´ð ½â£º£¨1£©Í¼¢ÚÖÐÒõÓ°²¿·ÖµÄÃæ»ýΪ£¨m+n£©2-4mn»ò£¨m-n£©2£¬
¹Ê´ð°¸Îª£º£¨m+n£©2-4mn»ò£¨m-n£©2£»
£¨2£©Èý¸ö´úÊýʽ£¨m+n£©2£¬£¨m-n£©2£¬mnÖ®¼äµÄµÈÁ¿¹ØÏµÊÇ£¨m+n£©2-4mn=£¨m-n£©2£¬
¹Ê´ð°¸Îª£º£¨m+n£©2-4mn=£¨m-n£©2£»
£¨3£©Í¼¢Û±íʾµÄ¹ØÏµÊ½Îª£º£¨2m+n£©£¨m+n£©=2m2+3mn+n2£¬
¹Ê´ð°¸Îª£º£¨2m+n£©£¨m+n£©=2m2+3mn+n2£»
£¨4£©ÈçͼËùʾ£º
£®
µãÆÀ ±¾Ì⿼²éÁËÍêȫƽ·½¹«Ê½µÄ¼¸ºÎ±³¾°£¬ÊôÓÚ»ù´¡Ì⣬עÒâ×Ðϸ¹Û²ìͼÐΣ¬±íʾ³ö¸÷ͼÐεÄÃæ»ýÊǹؼü£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
14£®ÏÂÁмÆËãÖУ¬ÕýÈ·µÄÊÇ£¨¡¡¡¡£©
| A£® | $\sqrt{2}$+$\sqrt{3}$=$\sqrt{5}$ | B£® | 3$\sqrt{2}$-$\sqrt{2}$=3 | C£® | $\sqrt{4\frac{1}{4}}$=2$\frac{1}{2}$ | D£® | $\sqrt{£¨-3£©^{2}}$=3 |