题目内容

如图,在四边形ABCD中,AD∥BC,E为CD的中点,连接AE、BE,BE⊥AE,延长AE交BC的延长线于点F.

求证:(1)FC=AD;

(2)AB=BC+AD.

(1)证明见解析;(2)证明见解析. 【解析】试题分析:(1)根据AD∥BC可知∠ADC=∠ECF,再根据E是CD的中点可求出△ADE≌△FCE,根据全等三角形的性质即可解答. (2)根据线段垂直平分线的性质判断出AB=BF即可. 证明:(1)∵AD∥BC(已知), ∴∠ADC=∠ECF(两直线平行,内错角相等), ∵E是CD的中点(已知), ∴DE=EC(中点...
练习册系列答案
相关题目

满足下列条件的△ABC中,不是直角三角形的是( )

A.∠B+∠A=∠C   B.∠A:∠B:∠C=2:3:5  

C.∠A=2∠B=3∠C   D.一个外角等于和它相邻的一个内角

C 【解析】本题考查了直角三角形的判定 根据三角形的内角和是及邻补角是,对各选项进行分析即可。 A、∵∠B+∠A=∠C,∴∠C=90°,∴△ABC是直角三角形; B、∵∠A:∠B:∠C=2:3:5,∴∠C=90°,∴△ABC是直角三角形; C、∵∠A=2∠B=3∠C,∴∠A≠90°,∴△ABC不是直角三角形; D、∵一个外角等于和它相邻的内角,∴每一个角等于90...

端午节吃粽子是中华民族的传统习俗,妈妈买了2只红豆粽、3只碱水粽、5只干肉粽,粽子除内部馅料不同外其它均相同,小颖随意吃一个,吃到红豆粽的概率是( )

A. B. C. D.

B 【解析】试题分析:根据概率的定义,一共有10只粽子,其中红豆粽有2个,所以吃到红豆粽的概率是. 故选:B.

长为l的一根绳,恰好可围成两个全等三角形,则其中一个三角形的最长边x的取值范围为__________.

≤x< 【解析】试题解析:∵围成两个全等的三角形可得两个三角形的周长相等, ∴可得 又因为x为最长边大于周长的, 综上可得 故答案为:

如图,线段AD把△ABC分为面积相等的两部分,则线段AD是( ).

A. 三角形的角平分线 B. 三角形的中线

C. 三角形的高 D. 以上都不对

B 【解析】试题分析:三角形的中线将三角形的面积分成相等的两部分,角平分线是指将角分成度数相等的两个角.

如图,在△ABC中,∠B=55°,∠C=30°,分别以点A和点C为圆心,大于AC的长为半径画弧,两弧相交于点M,N,作直线MN,交BC于点D,连接AD,则∠BAD的度数为(  )

A. 65° B. 60° C. 55° D. 45°

A 【解析】分析:根据线段垂直平分线的性质得到AD=DC,根据等腰三角形的性质得到∠C=∠DAC, 求得∠DAC=30°,根据三角形的内角和得到∠BAC=95°,即可得到结论. 详解:由题意可得:MN是AC的垂直平分线,则AD=DC,故∠C=∠DAC. ∵∠C=30°,∴∠DAC=30°. ∵∠B=55°,∴∠BAC=95°,∴∠BAD=∠BAC﹣∠CAD=65°. ...

下列说法中:

①P是线段AB上的一点,直线l经过点P且l⊥AB,则l是线段AB的垂直平分线;

②直线l经过线段AB的中点,则l是线段AB的垂直平分线;

③若AP=PB,且直线l垂直于线段AB,则l是线段AB的垂直平分线;

④经过线段AB的中点P且垂直于AB的直线l是线段AB的垂直平分线.

其中正确的有(  )

A. 1个 B. 2个 C. 3个 D. 4个

A 【解析】根据线段的垂直平分线的定义,以及定理:到线段的两端距离相等的点在线段的垂直平分线上,即可判断. 【解析】 ①当P不是AB的中点,则直线l不平分线段AB,故错误; ②直线l经过线段AB的中点,且垂直于AB则l是线段AB的垂直平分线,故错误; ③若AP=PB,则P在线段AB的垂直平分线上,但l不一定过点P,所以直线l不一定是线段AB的垂直平分线,故错误; ④...

在△ABC中,∠C=90°,cosA=,AC=6.求△ABC的周长和面积.

周长为24,面积为24. 【解析】试题分析:根据余弦的定义求出斜边AB的长,再根据勾股定理求出BC的长,再根据三角形的周长、面积的求法即可得. 试题解析:∵∠C=90°,∴cosA=, ∵cosA=,AC=6, ∴AB=10, ∴BC==8, ∴△ABC的周长=AC+BC+AB=6+8+10=24, S△ABC==24.

下列命题正确的是( )

A.内错角相等

B.相等的角是对顶角

C.三条直线相交 ,必产生同位角、内错角、同旁内角

D.同位角相等,两直线平行

D. 【解析】 试题分析:A.只有两直线平行,内错角才相等,故错误; B.对顶角相等,但相等的角不一定是对顶角,故错误; C.必须出现“三线八角”的形式,即两直线被第三条直线所截,才产生同位角,内错角,同旁内角,故错误; D.平行线的判定定理,故正确. 故选D.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网