题目内容

如图,线段AD把△ABC分为面积相等的两部分,则线段AD是( ).

A. 三角形的角平分线 B. 三角形的中线

C. 三角形的高 D. 以上都不对

B 【解析】试题分析:三角形的中线将三角形的面积分成相等的两部分,角平分线是指将角分成度数相等的两个角.
练习册系列答案
相关题目

已知:a、b、c是△ABC三边长,且M=(a+b+c)(a+b-c)(a-b-c),那么 (  )

A. M>0 B. M=0 C. M<0 D. 不能确定

C 【解析】试题解析:∵a、b、c是△ABC三边长, ∴a+b+c>0,a+b?c>0,a?b?c<0, ∴M=(a+b+c)(a+b?c)(a?b?c)<0. 故选C.

如图,已知在△ABC中,AD⊥BC于点D,AE平分∠BAC,判断∠EAD与 (∠C-∠B)的关系,并说明理由.

∠EAD= (∠C-∠B).理由见解析 【解析】试题分析:根据三角形内角和定理求出求出∠DAC和∠EAC,相减即可得出答案. 试题解析: 理由是: ∵AE平分∠BAC, ∵AD⊥BC,

如图所示, AB=AC,AD=AE,∠BAC=∠DAE,∠1=25°,∠2=30°,则∠3=_____.

55° 【解析】求出∠BAD=∠EAC,证△BAD≌△EAC,推出∠2=∠ABD=30°,根据三角形的外角性质求出即可. 【解析】 ∵∠BAC=∠DAE, ∴∠BAC﹣∠DAC=∠DAE﹣∠DAC, ∴∠1=∠EAC, 在△BAD和△EAC中, AB=AC,∠BAD=∠EAC, ∴△BAD≌△EAC(SAS), ∴∠2=∠ABD=30°, ∵...

如图,在四边形ABCD中,AD∥BC,E为CD的中点,连接AE、BE,BE⊥AE,延长AE交BC的延长线于点F.

求证:(1)FC=AD;

(2)AB=BC+AD.

(1)证明见解析;(2)证明见解析. 【解析】试题分析:(1)根据AD∥BC可知∠ADC=∠ECF,再根据E是CD的中点可求出△ADE≌△FCE,根据全等三角形的性质即可解答. (2)根据线段垂直平分线的性质判断出AB=BF即可. 证明:(1)∵AD∥BC(已知), ∴∠ADC=∠ECF(两直线平行,内错角相等), ∵E是CD的中点(已知), ∴DE=EC(中点...

△ABC中,AB = 5,AC = 6,BC = 4,边AB的垂直平分线交AC于点D,则△BDC的周长是( )

A. 8 B. 9 C. 10 D. 11

C 【解析】试题分析:由ED是AB的垂直平分线,可得AD=BD,又由△BDC的周长=DB+BC+CD,即可得△BDC的周长=AD+BC+CD=AC+BC. ∵ED是AB的垂直平分线, ∴AD=BD, ∵△BDC的周长=DB+BC+CD, ∴△BDC的周长=AD+BC+CD=AC+BC=6+4=10.

如图所示,在Rt△ACD和Rt△BCE中,若AD=BE,DC=EC,则无法得出的结论是( )

A. OA=OB B. E是AC的中点 C. △AOE≌△BOD D. AE=BD

B 【解析】∵∠C=∠C=90°, ∴△ACD和△BCE是直角三角形, 在Rt△ACD和Rt△BCE中, ∴Rt△ACD≌Rt△BCE(HL), ∴∠B=∠A,CB=CA, ∵CD=CE, ∴AE=BD,故D正确, 在△AOE和△BOD中, ∴△AOE≌△BOD(AAS),故C正确, ∴AO=OB,故A正确, AE=BD,CE=CD...

如图,若AB∥CD,则∠A、∠E、∠D之间的关系是( )

A. ∠A+∠E+∠D=180° B. ∠A-∠E+∠D=180°

C. ∠A+∠E-∠D=180° D. ∠A+∠E+∠D=270°

C 【解析】过点E作EF∥CD, ∵AB∥CD, ∴AB∥EF∥CD, ∴∠AEF=180°-∠A,∠DEF=∠D, ∴∠AED=∠AEF+∠DEF=180°-∠A+∠D; 即∠AED+∠A-∠D =180°. 故选C.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网