题目内容

问题:如图,线段AC上依次有D,B,E三点,其中点B为线段AC的中点,AD=BE,若DE=4,求线段AC的长.请补全以下解答过程.
解:∵D,B,E三点依次在线段AC上,
∴DE=
 
+
 

∵AD=BE,
∴DE=DB+
 
=AB.
∵DE=4,
∴AB=
 

 

∴AC=2AB=
 
考点:两点间的距离
专题:推理填空题
分析:根据线段的和差,可得DE的长,根据等量代换,可得AB的长,根据线段中点的性质,可得答案.
解答:解:∵D,B,E三点依次在线段AC上,
∴DE=DB+BE.
∵AD=BE,
∴DE=DB+AD=AB.
∵DE=4,
∴AB=4.
∵点B为线段AC的中点,
∴AC=2AB=8,
故答案为:DB,BE;AD;4;点B为线段AC的中点;8.
点评:本题考查了两点间的距离,利用等量代换得出AB的值是解题关键,又利用了线段中点的性质.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网