题目内容

4.如果要证明平行四边形ABCD为正方形,那么我们需要在四边形ABCD是平行四边形的基础上,进一步证明(  )
A.AC和BD互相垂直平分B.AB=AD且AC⊥BD
C.∠A=∠B且AC=BDD.AB=AD且AC=BD

分析 根据正方形的判定对各个选项进行分析从而得到最后的答案.

解答 解:A、对角线互相垂直的平行四边形是菱形,对角线互相平分的四边形是平行四边形,所以不能判断四边形ABCD是正方形;
B、根据有一组邻边相等的平行四边形是菱形,或者对角线互相垂直的平行四边形是菱形,所以不能判断平行四边形ABCD是正方形;
C、一组邻角相等的平行四边形是矩形,对角线相等的平行四边形也是矩形,即只能证明四边形ABCD是矩形,不能判断四边形ABCD是正方形;
D、根据对角线互相垂直的平行四边形是菱形,对角线相等的平行四边形为矩形,所以能判断四边形ABCD是正方形.
故选D.

点评 本题是考查正方形的判别方法,判别一个四边形为正方形主要根据正方形的概念,途经有两种:
①先说明它是矩形,再说明有一组邻边相等;②先说明它是菱形,再说明它有一个角为直角.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网