题目内容

2.点O是直线AB上一点,∠COD是直角,OE平分∠BOC.
(1)?①如图1,若∠AOC=50°,求∠DOE的度数;
?②如图1,若∠AOC=α,直接写出∠DOE的度数(用含α的代数式表示);
(2)将图1中的∠COD按顺时针方向旋转至图2所示的位置.探究∠AOC与∠DOE的度数之间的关系,写出你的结论,并说明理由.

分析 (1)①首先求得∠COB的度数,然后根据角平分线的定义求得∠COE的度数,再根据∠DOE=∠COD-∠COE即可求解;
②解法与①相同,把①中的60°改成α即可;
(2)把∠AOC的度数作为已知量,求得∠BOC的度数,然后根据角的平分线的定义求得∠COE的度数,再根据∠DOE=∠COD-∠COE求得∠DOE,即可解决.

解答 解:(1)①∵∠AOC=50°
∴∠BOC=180°-∠AOC
=180°-50°
=130°
又∵OE平分∠BOC
∴∠COE=$\frac{1}{2}$∠BOC=$\frac{1}{2}$×130°=65°
又∵∠COD=90°
∴∠DOE=∠COD-∠COE
=90°-65°
=25°
②∠DOE=90°-$\frac{1}{2}$(180-α)
=90°-90°+$\frac{1}{2}$α=$\frac{1}{2}$α;
(2)∠DOE=$\frac{1}{2}$∠AOC,理由如下:
∵∠BOC=180°-∠AOC
又∵OE平分∠BOC
∴∠COE=$\frac{1}{2}$∠BOC=$\frac{1}{2}$(180°-∠AOC)
=90°-$\frac{1}{2}$∠AOC
又∵∠DOE=90°-∠COE
=90°-(90°-$\frac{1}{2}$∠AOC)
=$\frac{1}{2}$∠AOC.

点评 本题考查了角度的计算,正确理解角平分线的定义,理解角度之间的和差关系是关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网