题目内容

15.如图,在平面直角坐标系xOy中,二次函数y=-x2-2x图象位于x轴上方的部分记作F1,与x轴交于点P1和O;F2与F1关于点O对称,与x轴另一个交点为P2;F3与F2关于点P2对称,与x轴另一个交点为P3;….这样依次得到F1,F2,F3,…,Fn,则Fn的顶点坐标为[2n-3,(-1)n+1](n为正整数,用含n的代数式表示).

分析 根据抛物线的解析式来求F1的顶点坐标;根据图象的对称性确定出顶点坐标纵坐标F1,F2分别为1和-1即可得出结论.

解答 解:∵y=-x2-2x=-(x+1)2+1,
∴F1的顶点坐标为 (-1,1).
又y=-x2-2x=-x(x+2),
∴P1(-2,0),
∴根据函数的对称性得到:F2的顶点坐标为(1,-1),P2(2,0),
F3的顶点坐标为(3,1),P3(4,0),

F8的顶点坐标为(13,-1),
Fn的顶点坐标为(2n-3,(-1)n+1).
故答案是:(2n-3,(-1)n+1

点评 本题考查了二次函数图象与几何变换.还用到了二次函数图象的对称性,解题的关键是根据抛物线的顶点坐标和对称性找到Fn的顶点坐标变换规律.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网