题目内容

7.如图,AB是⊙O的直径,C、D是⊙O上两点,∠CDB=30°,过点C作⊙O的切线交AB的延长线于点E,则cos∠E等于(  )
A.$\frac{\sqrt{3}}{2}$B.$\frac{1}{2}$C.$\frac{\sqrt{2}}{2}$D.1

分析 连接OC,求出∠OCE=90°,求出∠A=∠ACO=30°,根据三角形外角性质求出∠COE=60°,进而可求出∠E的度数,即可求出答案.

解答 解:
连接OC,
∵EC切⊙O于C,
∴∠OCE=90°,
∵∠CDB=30°,
∴∠A=∠CDB=30°,
∵OA=OC,
∴∠ACO=∠A=30°,
∴∠COE=30°+30°=60°,
∴∠E=180°-90°-60°=30°,
∴cos∠E=$\frac{\sqrt{3}}{2}$,
故选A.

点评 本题考查了切线性质,三角形的外角性质,圆周角定理,等腰三角形的性质的应用,求出∠E的度数是解题关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网