已知抛物线

(1)用配方法求它的顶点坐标、对称轴;

(2)x取何值时,y随x增大而减小?

(3)x取何值时,抛物线在x轴上方?

(1)顶点坐标为(-1, ),对称轴为:x= -1;(2)x﹥-1时,随增大而减小 ;(3)-4﹤x﹤2时,抛物线在x轴上方. 【解析】试题分析:(1)用配方法时,先提二次项系数,再配方,写成顶点式,根据顶点式的坐标特点求顶点坐标及对称轴; (2)对称轴是x=-1,开口向下,根据对称轴及开口方向确定函数的增减性; (3)令y=0,确定函数图象与x轴的交点,结合开口方向判断x的取值...

已知抛物线与x轴的交点为(,0)和(-2,0),则因式分解的结果是__________

【解析】∵抛物线与x轴的交点为(,0)和(-2,0),a=5, ∴抛物线的解析式用交点式表示为 ∴= 即: =. 故答案为: .

一列火车从车站开出,预计行程为450千米,当它出发3小时后,因特殊情况而多 停一站,因此耽误30分钟,后来把速度提高了20%,结果准时到达目的地,求这列火车原来的速度.

75千米/时. 【解析】试题分析:设这列火车原来的速度为每小时x千米,则提速后速度为每小时(1+20%)x千米,根据题意可得等量关系:按原速度行驶(450-x)千米所用时间=提速后行驶(450-x)千米所用时间+,列出方程,求解即可. 试题解析:设这列火车原来的速度为x千米/时,根据题意, 得+, 解得x=75, 经检验x=75是原方程的解, 所以,这列火车原来...

当a=_______时,方程=2的解为4.

【解析】由题意得: , 解得:a=, 经检验a=符合原方程, 故答案为: .

解分式方程的基本思想是把分式方程化为_________,最后要注意_________.

整式方程 检验 【解析】解分式方程的基本思想是把分式方程化为整式方程,最后要注意检验, 故答案为:整式方程,检验.

已知抛物线y=ax2+bx+c的大致图象如图所示,试确定a,b,c,b2-4ac及a+b+c的符号.

a+b+c>0 【解析】分析:根据二次函数的图形确定a、b、c的符号,根据抛物线与x轴的交点确定的符号,由当x=1时,函数值的符号确定a+b+c的符号. 本题解析: ∵抛物线开口向上,∴a>0.∵抛物线与y轴的交点在y轴的负半轴上,∴C<0.又∵对称轴在y轴左侧,∴ab>0.∵a>0,∴b>0.∵抛物线与x轴有两个交点,∴△=b2-4ac>0.∵当x=1时,y>0,∴a+b+c>...

如图,一艘海轮位于灯塔P的北偏东53°方向,距离灯塔100海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东45°方向上的B处.

(1)在图中画出点B,并求出B处与灯塔P的距离(结果取整数);

(2)用方向和距离描述灯塔P相对于B处的位置.

(参考数据:sin 53°≈0.80,cos 53°≈0.60,tan53°≈1.33, ≈1.41)

(1)点B的位置见解析,PB≈113海里; (2)灯塔P位于B处的西北(或北偏西45°)方向,距离B处大约113海里. 【解析】试题分析:(1)先在图中画出点B,作PC⊥AB于C,先解Rt△PAC,得出PC=PA•sin∠PAC=80,再解Rt△PBC,得出PB=PC=1.41×80≈113; (2)由∠CBP=45°,PB≈113海里,即可得到灯塔P位于B处北偏西45°方向,且...

平行四边形的对角线一定具有的性质是( )

A. 相等 B. 互相平分

C. 互相垂直 D. 互相垂直且相等

B 【解析】试题分析:根据平行四边形的对角线互相平分可得答案. 【解析】 平行四边形的对角线互相平分, 故选:B.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网