题目内容
13.分析 本题需先分别求出S△ABD,S△ABE再根据S△ADF-S△BEF=S△ABD-S△ABE即可求出结果.
解答 解:∵点D是AC的中点,
∴AD=$\frac{1}{2}$AC,
∵S△ABC=12,
∴S△ABD=$\frac{1}{2}$S△ABC=$\frac{1}{2}$×12=6.
∵EC=2BE,S△ABC=12,
∴S△ABE=$\frac{1}{3}$S△ABC=$\frac{1}{3}$×12=4,
∵S△ABD-S△ABE=(S△ADF+S△ABF)-(S△ABF+S△BEF)=S△ADF-S△BEF,
即S△ADF-S△BEF=S△ABD-S△ABE=6-4=2.
故答案为:2.
点评 本题考查三角形的面积,关键知道当高相等时,面积等于底边的比,根据此可求出三角形的面积,然后求出差.
练习册系列答案
相关题目
1.
如图,方格纸中有每个小正方形的边长为1,记图中阴影部分的面积为S1,△ABC的面积为S2,则$\frac{{S}_{1}}{S_2}$=( )
| A. | $\frac{11}{42}$ | B. | $\frac{1}{4}$ | C. | $\frac{1}{3}$ | D. | $\frac{1}{2}$ |
18.
如图,四边形ABCD为矩形,过点D作对角线BD的垂线,交BC的延长线于点E,取BE的中点F,连接DF,DF=4,设AB=x,AD=y,则x2+(y-4)2的值为( )
| A. | 4 | B. | 8 | C. | 12 | D. | 16 |
5.
如图,⊙O的弦BC长为8,点A是⊙O上一动点,且∠BAC=45°,点D,E分别是BC,AB的中点,则DE长的最大值是( )
| A. | 4 | B. | 4$\sqrt{2}$ | C. | 8 | D. | 8$\sqrt{2}$ |
3.
如图,AB∥CD,EF与AB、CD分别相交于点E、F,EP⊥EF,与∠EFD的平分线FP相交于点P,且∠BEP=50°,则∠EPF的度数为( )
| A. | 55° | B. | 60° | C. | 65° | D. | 70° |