题目内容

17.如图所示,已知线段AB=36,点C、D分别是线段AB上的两点,且满足AC:CD:DB=3:4:5,点K是线段CD的中点,求线段KB的长度.

解:设AC=3x,则
CD=4x,DB=5x,
∵AB=AC+CD+DB
∴AB=12x(用含x的代数式表示)=36
∴x=3
∵点K是线段CD的中点
∴KD=$\frac{1}{2}$CD=6
∴KB=KD+DB=21.

分析 设AC=3x,则CD=4x,DB=5x,根据AB=AC+CD+DB列方程12x(用含x的代数式表示)=36求得x=3,根据点K是线段CD的中点得到KD=$\frac{1}{2}$CD=6即可得到结论.

解答 解:设AC=3x,则
CD=4x,DB=5x,
∵AB=AC+CD+DB
∴AB=12x(用含x的代数式表示)=36
∴x=3
∵点K是线段CD的中点
∴KD=$\frac{1}{2}$CD=6
∴KB=KD+DB=21.
故答案为;5x,12x,3,CD,6,21.

点评 本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网