题目内容

5.如图,⊙O1与⊙O2外切点A,半径为r1,r2,PB,PC分别为两圆的切线,B,C为切点,PB:PC=r1:r2,又PA交⊙O2于点E,则下面结论不正确的是(  )
A.S△PAB:S△PCE=r12:r22B.PA:PD=r2:r1
C.AE:AD=r2:r1D.PB:PD=r2:r1

分析 先证明△O1PB∽△O2PC推出△O1AP≌△O2EP,再由△PAB∽△PEC得$\frac{{S}_{△PAB}}{{S}_{△PCE}}$=$\frac{P{B}^{2}}{P{C}^{2}}$═$\frac{{{r}_{1}}^{2}}{{{r}_{2}}^{2}}$,故A正确;由△PO1D∽△PO2A得到$\frac{PA}{PD}=\frac{{O}_{2}A}{{O}_{1}D}=\frac{{r}_{2}}{{r}_{1}}$,故B正确;由△O1AD∽△O2AE,得$\frac{AE}{AD}$=$\frac{{O}_{2}A}{{O}_{1}A}$=$\frac{{r}_{2}}{{r}_{1}}$故C正确;由此不难判断结论.

解答 解:∵PB,PC分别为两圆的切线,
∴∠O1BP=∠O2CP,=90°,
∵$\frac{PB}{PC}$=$\frac{{r}_{1}}{{r}_{2}}$=$\frac{{O}_{1}B}{{O}_{2}C}$,
∴△O1PB∽△O2PC,
∴∠3=∠4,$\frac{P{O}_{1}}{P{O}_{2}}$=$\frac{{r}_{1}}{{r}_{2}}$=$\frac{{O}_{1}A}{{O}_{2}A}$,
∴PA平分∠O1PO2,即∠1=∠2,
∴∠APB=∠APC,
2OA=O2E,
∴∠O1AP=∠O2EP,
∴△O1AP≌△O2EP,
∴$\frac{PA}{PE}$=$\frac{{r}_{1}}{{r}_{2}}$=$\frac{PB}{PC}$,
∴△PAB∽△PEC,
∴$\frac{{S}_{△PAB}}{{S}_{△PCE}}$=$\frac{P{B}^{2}}{P{C}^{2}}$═$\frac{{{r}_{1}}^{2}}{{{r}_{2}}^{2}}$;故A正确;
∵$\frac{PA}{PE}$=$\frac{{r}_{1}}{{r}_{2}}$=$\frac{{O}_{1}D}{{O}_{2}A}$,
∴△PO1D∽△PO2A,
∴$\frac{PA}{PD}=\frac{{O}_{2}A}{{O}_{1}D}=\frac{{r}_{2}}{{r}_{1}}$;故B正确;
∵∠O1DA=∠O1AD=∠O2AE=∠O2EA,
∴△O1AD∽△O2AE,
∴$\frac{AE}{AD}$=$\frac{{O}_{2}A}{{O}_{1}A}$=$\frac{{r}_{2}}{{r}_{1}}$;故C正确;
综上,不正确的选D.
故选D.

点评 本题考查了切线的性质、相似三角形的判定和性质、记住圆的切线垂直于经过切点的半径,相似三角形的面积比等于相似比的平方,解题的关键是正确寻找相似三角形,利用相似三角形的寻找解决问题,属于中考常考题型.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网