ÌâÄ¿ÄÚÈÝ
18£®¶þ´Îº¯ÊýµÄ¸´Ï°¿ÎÖУ¬ÏÄÀÏʦ¸ø³ö¹ØÓÚxµÄº¯Êýy=2kx2-£¨4k+1£©x-k+1£¨kΪʵÊý£©£®ÏÄÀÏʦ£ºÇë¶ÀÁ¢Ë¼¿¼£¬²¢°Ñ̽Ë÷·¢ÏÖµÄÓë¸Ãº¯ÊýÓйصĽáÂÛ£¨ÐÔÖÊ£©Ð´µ½ºÚ°åÉÏ£®
ѧÉú¶ÀÁ¢Ë¼¿¼ºó£¬ºÚ°åÉϳöÏÖÁËһЩ½áÂÛ£®ÏÄÀÏʦ×÷Ϊ»î¶¯Ò»Ô±£¬ÓÖ²¹³äÁËһЩ½áÂÛ£¬²¢´ÓÖÐÑ¡ÔñÁËÈçÏÂËÄÌõ£º
¢Ù´æÔÚº¯Êý£¬ÆäͼÏó¾¹ýµã£¨1£¬0£©£»
¢Ú´æÔÚº¯Êý£¬¸Ãº¯ÊýµÄº¯ÊýÖµyʼÖÕËæxµÄÔö´ó¶ø¼õС£»
¢Ûº¯ÊýͼÏóÓпÉÄܾ¹ýÁ½¸öÏóÏÞ£»
¢ÜÈôº¯ÊýÓÐ×î´óÖµ£¬Ôò×î´óÖµ±ØÎªÕýÊý£¬Èôº¯ÊýÓÐ×îСֵ£¬Ôò×îСֵ±ØÎª¸ºÊý£®
ÉÏÊö½áÂÛÖÐÕýÈ·¸öÊýΪ£¨¡¡¡¡£©
| A£® | 1¸ö | B£® | 2¸ö | C£® | 3¸ö | D£® | 4¸ö |
·ÖÎö ¢Ù½«£¨1£¬0£©µã´úÈ뺯Êý£¬½â³ökµÄÖµ¼´¿É×÷³öÅжϣ»
¢ÚÊ×ÏÈ¿¼ÂÇ£¬º¯ÊýΪһ´Îº¯ÊýµÄÇé¿ö£¬´Ó¶ø¿ÉÅжÏΪ¼Ù£»
¢Û¸ù¾Ý¢Ú¼´¿É×÷³öÅжϣ»
¢Üµ±k=0ʱ£¬º¯ÊýΪһ´Îº¯Êý£¬ÎÞ×î´óÖ®ºÍ×îСֵ£¬µ±k¡Ù0ʱ£¬º¯ÊýΪÅ×ÎïÏߣ¬Çó³ö¶¥µãµÄ×Ý×ø±ê±í´ïʽ£¬¼´¿É×÷³öÅжÏ
½â´ð ½â£º¢Ù½«£¨1£¬0£©´úÈë¿ÉµÃ£º2k-£¨4k+1£©-k+1=0£¬½âµÃ£ºk=0£¬´ËÑ¡ÏîÕýÈ·£®
¢Úµ±k=0ʱ£¬y=-x+1£¬¸Ãº¯ÊýµÄº¯ÊýÖµyʼÖÕËæxµÄÔö´ó¶ø¼õС£»´ËÑ¡ÏîÕýÈ·£»
¢Ûy=-x+1£¬¾¹ý3¸öÏóÏÞ£¬´ËÑ¡Ïî´íÎó£»
¢Üµ±k=0ʱ£¬º¯ÊýÎÞ×î´ó¡¢×îСֵ£»
k¡Ù0ʱ£¬y×î=-$\frac{24{k}^{2}+1}{8k}$£¬µ±k£¾0ʱ£¬ÓÐ×îСֵ£¬×îСֵΪ¸º£»µ±k£¼0ʱ£¬ÓÐ×î´óÖµ£¬×î´óֵΪÕý£»´ËÑ¡ÏîÕýÈ·£®
ÕýÈ·µÄÊǢ٢ڢܣ®
¹ÊÑ¡£ºC£®
µãÆÀ ´ËÌ⿼²é¶þ´Îº¯ÊýµÄÐÔÖÊ£¬Ò»´Îº¯ÊýµÄÐÔÖÊ£¬ÀûÓþÙÌØÀýµÄ·½·¨Êǽâ¾öÎÊÌâ³£Ó÷½·¨£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
6£®
ijÖÐѧʳÌÃÌṩÁËËÄÖÖ¼Û¸ñµÄÎç²Í¹©Ñ§ÉúÑ¡Ôñ£¬ÕâËÄÖÖ¼Û¸ñ·Ö±ðÊÇ£ºA£®3Ôª£¬B£®4Ôª£¬C£®5Ôª£¬D£®6Ôª£®ÎªÁ˽âѧÉú¶ÔËÄÖÖÎç²ÍµÄ¹ºÂòÇé¿ö£¬Ñ§Ð£Ëæ»ú³éÑùµ÷²éÁ˼ס¢ÒÒÁ½°àѧÉúijÌ칺ÂòËÄÖÖÎç²ÍµÄÇé¿ö£¬ÒÀ¾Ýͳ¼ÆÊý¾ÝÖÆ³ÉÈçϵÄͳ¼ÆÍ¼±í£º
¼×¡¢ÒÒÁ½°àѧÉú¹ºÂòËÄÖÖÎç²ÍÇé¿öͳ¼Æ±í
£¨1£©ÒÒ°àÓÐѧÉú50ÈË£»
£¨2£©´ÓÕâ´Î½ÓÊܵ÷²éµÄѧÉúÖÐËæ»ú³é²éÒ»ÈË£¬Ç¡ºÃÊǹºÂòCÖÖÎç²ÍµÄѧÉúµÄ¸ÅÂÊÊÇ41%£»
£¨3£©Çë´Óƽ¾ùÊý¡¢ÖÐλÊýºÍÖÚÊýµÄ½Ç¶È·ÖÎö¼×¡¢ÒÒÁ½¸ö°àѧÉú¹ºÂòµÄÎç²Í¼Û¸ñ¸ßµÍÇé¿ö£®
¼×¡¢ÒÒÁ½°àѧÉú¹ºÂòËÄÖÖÎç²ÍÇé¿öͳ¼Æ±í
| A | B | C | D | |
| ¼× | 6 | 22 | 16 | 6 |
| ÒÒ | £¿ | 13 | 25 | 3 |
£¨2£©´ÓÕâ´Î½ÓÊܵ÷²éµÄѧÉúÖÐËæ»ú³é²éÒ»ÈË£¬Ç¡ºÃÊǹºÂòCÖÖÎç²ÍµÄѧÉúµÄ¸ÅÂÊÊÇ41%£»
£¨3£©Çë´Óƽ¾ùÊý¡¢ÖÐλÊýºÍÖÚÊýµÄ½Ç¶È·ÖÎö¼×¡¢ÒÒÁ½¸ö°àѧÉú¹ºÂòµÄÎç²Í¼Û¸ñ¸ßµÍÇé¿ö£®
10£®ÔÚÖ±½Ç¡÷ABC£¬¡ÏC=90¡ã£¬sinA=$\frac{3}{5}$£¬BC=8£¬ÔòABµÄ³¤Îª£¨¡¡¡¡£©
| A£® | 10 | B£® | $\frac{40}{3}$ | C£® | $\frac{24}{5}$ | D£® | 12 |
7£®
Èçͼ£¬ÔÚ¡÷ABCÖУ¬µãD¡¢E·Ö±ðÔÚBC¡¢AB±ßÉÏ£¬DF¡ÎAB£¬½»AC±ßÓÚµãH£¬EF¡ÎBC£¬½»AC±ßÓÚµãG£¬ÔòÏÂÁнáÂÛÖÐÕýÈ·µÄÊÇ£¨¡¡¡¡£©
| A£® | $\frac{AE}{BE}=\frac{AG}{CG}$ | B£® | $\frac{EG}{GF}=\frac{AG}{CH}$ | C£® | $\frac{CH}{CF}=\frac{CD}{BD}$ | D£® | $\frac{EF}{CD}=\frac{AG}{CH}$ |
8£®ÒÑ֪˫ÇúÏßy=$\frac{k-2}{x}$¾¹ýµã£¨2£¬1£©£¬ÔòkµÄÖµµÈÓÚ£¨¡¡¡¡£©
| A£® | -1 | B£® | 1 | C£® | 2 | D£® | 4 |