题目内容

如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为点E,连接DE,F为线段DE上一点,且∠AFE=∠B.
(1)求证:△ADF∽△DEC;
(2)若AB=4,AD=3
3
AF=2
3
,求AE的长.
考点:相似三角形的判定与性质,勾股定理,平行四边形的性质
专题:
分析:(1)△ADF和△DEC中,易知∠ADF=∠CED(平行线的内错角),而∠AFD和∠C是等角的补角,由此可判定两个三角形相似;
(2)由(1)知△ADF∽△DEC,根据相似三角形的性质:对应边的比值相等即可求出DE的长,再利用勾股定理即可求出AE的长.
解答:(1)证明:∵四边形ABCD是平行四边形,
∴AB∥CD,AD∥BC,
∴∠B+∠C=180°,∠ADF=∠DEC.
∵∠AFD+∠AFE=180°,∠AFE=∠B
∴∠AFD=∠C
∴△ADF∽△DEC;

(2)解:∵四边形ABCD是平行四边形,
∴CD=AB=4,
由(1)知△ADF∽△DEC,
AD
DE
=
AF
CD

DE=
AD•CD
AF
=
3
3
×4
2
3
=6

在Rt△ADE中,由勾股定理得:AE=
DE2-AD2
=
62-(3
3
)
2
=3
点评:此题主要考查的是平行四边形的性质、相似三角形的判定和性质以及勾股定理的运用,解题的关键是熟记判定三角形相似的各种方法和各种性质.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网