题目内容

1.如图,反比例函数y=$\frac{k}{2x}$和一次函数y=2x-1,其中一次函数的图象经过(a,b),(a+k,b+k+2)两点且点A在第一象限,是两个函数的一个交点;
(1)求反比例函数的解析式?
(2)在x轴上是否存在点P,使△AOP为等腰三角形?存在,求出点P的坐标;若不存在,请说明理由.

分析 (1)列出关于a、b、k方程组,解方程组可以求出k的值.
(2)先求出点A坐标,再分三种情形:①当点O为等腰三角形△AOP的顶点,②当点A为等腰三角形△AOP的顶点,③当点P为等腰三角形△AOP的顶点,分别求出点P坐标即可.

解答 解:(1)∵一次函数y=2x-1经过(a,b),(a+k,b+k+2)两点,
∴$\left\{\begin{array}{l}{b=2a-1}\\{b+k+2=2(a+k)-1}\end{array}\right.$,
解得k=2,
∴反比例函数解析式为y=$\frac{1}{x}$.
(2)存在.
由$\left\{\begin{array}{l}{y=\frac{1}{x}}\\{y=2x-1}\end{array}\right.$解得$\left\{\begin{array}{l}{x=1}\\{y=1}\end{array}\right.$或$\left\{\begin{array}{l}{x=-\frac{1}{2}}\\{y=-2}\end{array}\right.$,
∴点A坐标(1,1).
∴OA=$\sqrt{2}$,
①当点O为等腰三角形△AOP的顶点时,点P坐标为(-$\sqrt{2}$,0)或($\sqrt{2}$,0).
②当点A为等腰三角形△AOP的顶点时,点P坐标为(2,0).
③当点P为等腰三角形△AOP的顶点时,点P坐标为(1,0).
∴△AOP为等腰三角形,点P坐标为(1,0)或(2,0)和(-$\sqrt{2}$,0)或($\sqrt{2}$,0).

点评 本题考查反比例函数与一次函数的交点问题,解题的关键是利用方程组解决问题,体现了数形结合的思想,学会分类讨论的方法,注意不能漏解,属于中考常考题型.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网