题目内容
如图所示,抛物线y=ax2+bx+c的顶点为B(–1,3),与x轴的交点A在点(–3,0)和(–2,0)之间,以下结论:①b2–4ac=0;②a+b+c>0;③2a–b=0;④c–a=3.其中正确的有( )
![]()
A. 1个 B. 2个 C. 3个 D. 4个
B 【解析】试题分析:根据图像可得:二次函数与x轴有两个交点,则,故①错误;根据函数的对称性可知:当x=1时,y0,即a+b+c0,故②错误;根据题意可知:函数的对称轴为直线x=-1,即,则2a-b=0,则③正确;当x=-1时,y=3,则a-b+c=3,根据③可知b=2a,则a-b+c=a-2a+c=c-a=3,故④正确;故本题选B.
练习册系列答案
相关题目