题目内容

15.提出命题:如图,在四边形ABCD中,∠A=∠C,∠ABC=∠ADC,求证:四边形ABCD是平行四边形.
小明提供了如下解答过程:
证明:连结BD.
∵∠1+∠3=180°-∠A,∠2+∠4=180°-∠C,∠A=∠C,
∴∠1+∠3=∠2+∠4.
∵∠ABC=∠ADC,
∴∠1=∠4,∠2=∠3.
∴AB∥CD,AD∥BC.
∴四边形ABCD是平行四边形(两组对边分别平行的四边形是平行四边形).
反思交流:(1)请问小明的解法正确吗?如果有错,请写出正确的证明过程.
(2)用语言叙述上述命题:B.
运用探究:下列条件中,能确定四边形ABCD是平行四边形的是(  )
(A)∠A:∠B:∠C:∠D=1:2:3:4             (B)∠A:∠B:∠C:∠D=1:3:1:3
(C)∠A:∠B:∠C:∠D=2:3:3:2             (D)∠A:∠B:∠C:∠D=1:1:3:3.

分析 (1)利用四边形的内角和和已知条件中的对角相等得到邻角互补,从而判定两组对边平行,进而证得结论;
(2)由(1)即可得出结论.

解答 解:(1)正确;理由如下:
∵∠1+∠3=180°-∠A,∠2+∠4=180°-∠C,∠A=∠C,
∴∠1+∠3=∠2+∠4.①
∵∠ABC=∠ADC,
即∠1+∠2=∠3+∠4,②
由①②相加、相减得:∠1=∠4,∠2=∠3.
∴AB∥CD,AD∥BC.
∴四边形ABCD是平行四边形(两组对边分别平行的四边形是平行四边形).
(2)∵∠A:∠B:∠C:∠D=1:3:1:3,
∴∠A=∠C,∠B=∠D,
∴四边形ABCD是平行四边形(两组对角分别相等的四边形是平行四边形);
故选:B.

点评 本题考查了平行四边形的判定,解题的关键是了解平行四边形的几个判定定理,难度不大.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网