题目内容

8.如图,已知四边形ABCD中,∠D=∠B=90°,AE平分∠DAB,CF平分∠DCB.
(1)求证:AE∥CF;
(证明过程己给出,请在下面的括号内填上适当的理由)
证明:∵∠DAB+∠DCB+∠D+∠B=360°(四边形内角和等于360°),
∴∠DAB+∠DCB=360°-(∠D+∠B)=180°(等式的性质).
∵AB平分∠DAB,CF平分∠DCB (已知),
∴∠1=$\frac{1}{2}$∠DAB,∠2=$\frac{1}{2}$∠DCB(角平分线定义),
∴∠1+∠2=$\frac{1}{2}$(∠DAB+∠DCB)=90°(等式的性质).
∵∠3+∠2+∠B=180°(三角形内角和定理),
∴∠3+∠2=180°-∠B=90°,
∴∠1=∠3(同角的余角相等),
∴AE∥CF(同位角相等两直线平行).
(2)若∠DAB=72°,求∠AEC的度数.

分析 (1)根据四边形的内角和∠DAB+∠DCB+∠D+∠B=360°得到∠DAB+∠DCB=360°-(∠D+∠B)=180°,由于∠1=$\frac{1}{2}$∠DAB,∠2=$\frac{1}{2}$∠DCB,于是得到∠1+∠2=$\frac{1}{2}$(∠DAB+∠DCB)=90°,根据三角形的内角和定理得到∠3+∠2=180°-∠B=90°,得到∠1=∠3,于是得到结论;
(2)根据∠DAB=72°,求得∠DCB=108°,于是得到∠2=∠DCF=54°,根据AE∥CF,即可得到结果.

解答 (1)证明:∵∠DAB+∠DCB+∠D+∠B=360°( 四边形内角和等于360°),
∴∠DAB+∠DCB=360°-(∠D+∠B)=180°(等式的性质).
∵AB平分∠DAB,CF平分∠DCB (已知),
∴∠1=$\frac{1}{2}$∠DAB,∠2=$\frac{1}{2}$∠DCB(角平分线定义),
∴∠1+∠2=$\frac{1}{2}$(∠DAB+∠DCB)=90°(等式的性质).
∵∠3+∠2+∠B=180°(三角形内角和定理),
∴∠3+∠2=180°-∠B=90°,
∴∠1=∠3(同角的余角相等),
∴AE∥CF(同位角相等两直线平行).

(2)解:∵∠DAB=72°,
∴∠DCB=108°,
∴∠2=∠DCF=54°,
∵AE∥CF,
∴∠AEC+∠DCF=180°,
∴∠AEC=126°.
故答案为:四边形内角和等于360°,角平分线定义,同角的余角相等,同位角相等两直线平行.

点评 本题考查了四边形内角和等于360°,三角形的内角和等于180°,平行线的判定,熟练掌握各性质是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网