题目内容
(1)求证:△ABE≌△CBF;
(2)若∠CAE=30°,求∠ACF的度数.
考点:全等三角形的判定与性质
专题:
分析:(1)由∠ABC=90°就可以求出∠CBF=90°,由SAS就可以得出△ABE≌△CBF;
(2)由∠CAE=30°就可以求出∠BAE=15°,就可以得出∠BCF=15°,由条件可以求出∠ACB=45°,进而可以求出∠ACF的度数.
(2)由∠CAE=30°就可以求出∠BAE=15°,就可以得出∠BCF=15°,由条件可以求出∠ACB=45°,进而可以求出∠ACF的度数.
解答:解:(1)证明:∵∠ABC=90°,
∴∠ABC=∠CBF=90°.
在△ABE和△CBF中,
,
∴△ABE≌△CBF(SAS);
(2)∵△ABE≌△CBF,
∴∠BAE=∠BCF.
∵∠ABC=90°,AB=CB,
∴∠BCA=∠BAC=45°.
∵∠CAE=30°,
∴∠BAE=15°,
∴∠BCF=15°.
∵∠ACF=∠BCF+∠ACB,
∴∠ACF=15°+45°=60°.
答:∠ACF的度数为60°.
∴∠ABC=∠CBF=90°.
在△ABE和△CBF中,
|
∴△ABE≌△CBF(SAS);
(2)∵△ABE≌△CBF,
∴∠BAE=∠BCF.
∵∠ABC=90°,AB=CB,
∴∠BCA=∠BAC=45°.
∵∠CAE=30°,
∴∠BAE=15°,
∴∠BCF=15°.
∵∠ACF=∠BCF+∠ACB,
∴∠ACF=15°+45°=60°.
答:∠ACF的度数为60°.
点评:本题考查了垂直的性质的运用,全等三角形的判定及性质的运用,等腰直角三角形的性质的运用,解答时证明三角形全等是关键.
练习册系列答案
相关题目
若不等式ax>b的正整数解仅为1、2、3、4,则下列结论正确的是( )
A、a<0且4<
| ||
B、a≤0且4≤
| ||
C、a<0且4<
| ||
D、a<0且4≤
|
| A、55° | B、65° |
| C、45° | D、75° |