题目内容

雅安地震发生后,全国人民抗震救灾,众志成城,值地震发生一周年之际,某地政府又筹集了重建家园的必需物资120吨打算运往灾区,现有甲、乙、丙三种车型供选择,每辆车的运载能力和运费如下表所示:(假设每辆车均满载)
车型
汽车运载量(吨/辆) 5 8 10
汽车运费(元/辆) 400 500 600
(1)全部物资可用甲型车8辆,乙型车5辆,丙型车
 
辆来运送.
(2)若全部物资都用甲、乙两种车型来运送,需运费8200元,问分别需甲、乙两种车型各几辆?
(3)为了节省运费,该地政府打算用甲、乙、丙三种车型同时参与运送,已知它们的总辆数为14辆,你能分别求出三种车型的辆数吗?此时的运费又是多少元?
考点:二元一次方程组的应用,二元一次方程的应用
专题:
分析:(1)根据甲型车运载量是5吨/辆,乙型车运载量是8吨/辆,丙型车运载量是10吨/辆,再根据总吨数,即可求出丙型车的车辆数;
(2)设需甲车x辆,乙车y辆,根据运费8200元,总吨数是120,列出方程组,再进行求解即可;
(3)设甲车有a辆,乙车有b辆,则丙车有(14-a-b)辆,列出等式,再根据a、b、14-a-b均为正整数,求出a,b的值,从而得出答案.
解答:解:(1)根据题意得:
(120-5×8-5×8)÷10=4(辆),
答:丙型车需4辆来运送.
故答案为:4.

(2)设需要甲x辆,乙y辆,根据题意得:
 
5x+8y=120
400x+500y=8200

解得
x=8
y=10

答:分别需甲、乙两种车型为8辆和10辆.

(3)设甲车有a辆,乙车有b辆,则丙车有(14-a-b)辆,由题意得
5a+8b+10(14-a-b)=120,
即a=4-
2
5
b,
∵a、b、14-a-b均为正整数,
∴b只能等于5,从而a=2,14-a-b=7,
∴甲车2辆,乙车5辆,丙车7辆,
则需运费400×2+500×5+600×7=7500(元),
答:甲车2辆,乙车5辆,丙车7辆,需运费7500元.
点评:本题考查了二元一次方程组和二元一次方程的应用,将现实生活中的事件与数学思想联系起来,读懂题列出方程即可求解.利用整体思想和未知数的实际意义通过筛选法可得到未知数的具体解,这种方法要掌握.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网